首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toluene-induced cells of Pseudomonas putida F1 removed trichloroethylene from growth media at a significantly greater initial rate than the methanotroph Methylosinus trichosporium OB3b. With toluene-induced P. putida F1, the initial degradation rate varied linearly with trichloroethylene concentration over the range of 8 to 80 microM (1.05 to 10.5 ppm). At 80 microM (10.5 ppm) trichloroethylene and 30 degrees C, the initial rate was 1.8 nmol/min per mg of total cell protein, but the rate decreased rapidly with time. A series of mutant strains derived from P. putida F1 that are defective in the todC gene, which encodes the oxygenase component of toluene dioxygenase, failed to degrade trichloroethylene and to oxidize indole to indigo. A spontaneous revertant selected from a todC culture regained simultaneously the abilities to oxidize toluene, to form indigo, and to degrade trichloroethylene. The three isomeric dichloroethylenes were degraded by P. putida F1, but tetrachloroethylene, vinyl chloride, and ethylene were not removed from incubation mixtures.  相似文献   

2.
Toluene-induced cells of Pseudomonas putida F1 removed trichloroethylene from growth media at a significantly greater initial rate than the methanotroph Methylosinus trichosporium OB3b. With toluene-induced P. putida F1, the initial degradation rate varied linearly with trichloroethylene concentration over the range of 8 to 80 microM (1.05 to 10.5 ppm). At 80 microM (10.5 ppm) trichloroethylene and 30 degrees C, the initial rate was 1.8 nmol/min per mg of total cell protein, but the rate decreased rapidly with time. A series of mutant strains derived from P. putida F1 that are defective in the todC gene, which encodes the oxygenase component of toluene dioxygenase, failed to degrade trichloroethylene and to oxidize indole to indigo. A spontaneous revertant selected from a todC culture regained simultaneously the abilities to oxidize toluene, to form indigo, and to degrade trichloroethylene. The three isomeric dichloroethylenes were degraded by P. putida F1, but tetrachloroethylene, vinyl chloride, and ethylene were not removed from incubation mixtures.  相似文献   

3.
We analyzed the kinetics and metabolic pathways of trichloroethylene and 1,1,1-trichloroethane degradation by the ethane-utilizing Mycobacterium sp. TA27. The apparent Vmax and Km of trichloroethylene were 9.8 nmol min(-1) mg of cells(-1) and 61.9 microM, respectively. The apparent Vmax and Km of 1,1,1-trichloroethane were 0.11 nmol min(-1) mg of cells(-1) and 3.1 microM, respectively. 2,2,2-trichloroethanol, trichloroacetic acid, chloral, and dichloroacetic acid were detected as metabolites of trichloroethylene. 2,2,2-trichloroethanol, trichloroacetic acid, and dichloroacetic acid were also detected as metabolites of 1,1,1-trichloroethane. The amounts of 2,2,2-trichloroethanol, trichloroacetic acid, chloral, and dichloroacetic acid derived from the degradation of 3.60 micromol trichloroethylene were 0.16 micromol (4.4%), 0.11 micromol (3.1%), 0.02 micromol (0.6%), and 0.02 micromol (0.6%), respectively. The amounts of 2,2,2-trichloroethanol, trichloroacetic acid and dichloroacetic acid derived from the degradation of 1.73 micromol 1,1,1-trichloroethane were 1.48 micromol (85.5%), 0.22 micromol (12.7%), and 0.02 micromol (1.2%), respectively. More than 90% of theoretical total chloride was released in trichloroethylene degradation. Chloral and 2,2,2-trichloroethanol were transformed into each other, and were finally converted to trichloroacetic acid, and dichloroacetic acid. Trichloroacetic acid and dichloroacetic acid were not degraded by strain TA27.  相似文献   

4.
Pseudomonas cepacia G4 degrades trichloroethylene (TCE) via a degradation pathway for aromatic compounds which is induced by substrates such as phenol and tryptophan. P. cepacia G4 5223 PR1 (PR1) is a Tn5 insertion mutant which constitutively expresses the toluene ortho-monooxygenase responsible for TCE degradation. In groundwater microcosms, phenol-induced strain G4 and noninduced strain PR1 degraded TCE (20 and 50 microM) to nondetectable levels (< 0.1 microM) within 24 h at densities of 10(8) cells per ml; at lower densities, degradation of TCE was not observed after 48 h. In aquifer sediment microcosms, TCE was reduced from 60 to < 0.1 microM within 24 h at 5 x 10(8) PR1 organisms per g (wet weight) of sediment and from 60 to 26 microM over a period of 10 weeks at 5 x 10(7) PR1 organisms per g. Viable G4 and PR1 cells decreased from approximately 10(7) to 10(4) per g over the 10-week period.  相似文献   

5.
Intact cells of Pseudomonas cepacia G4 completely degraded trichloroethylene (TCE) following growth with phenol. Degradation kinetics were determined for both phenol, used to induce requisite enzymes, and TCE, the target substrate. Apparent Ks and Vmax values for degradation of phenol by cells were 8.5 microM and 466 nmol/min per mg of protein, respectively. At phenol concentrations greater than 50 microM, phenol degradation was inhibited, yielding an apparent second-order inhibitory value, KSI, of 0.45 mM as modeled by the Haldane expression. A partition coefficient for TCE was determined to be 0.40 +/- 0.02, [TCEair]/[TCEwater], consistent with Henry's law. To eliminate experimental problems associated with TCE volatility and partitioning, a no-headspace bottle assay was developed, allowing for direct and accurate determinations of aqueous TCE concentration. By this assay procedure, apparent Ks and Vmax values determined for TCE degradation by intact cells were 3 microM and 8 nmol/min per mg of protein, respectively. Following a transient lag period, P. cepacia G4 degraded TCE at concentrations of at least 300 microM with no apparent retardation in rate. Consistent with Ks values determined for degradation, TCE significantly inhibited phenol degradation.  相似文献   

6.
Intact cells of Pseudomonas cepacia G4 completely degraded trichloroethylene (TCE) following growth with phenol. Degradation kinetics were determined for both phenol, used to induce requisite enzymes, and TCE, the target substrate. Apparent Ks and Vmax values for degradation of phenol by cells were 8.5 microM and 466 nmol/min per mg of protein, respectively. At phenol concentrations greater than 50 microM, phenol degradation was inhibited, yielding an apparent second-order inhibitory value, KSI, of 0.45 mM as modeled by the Haldane expression. A partition coefficient for TCE was determined to be 0.40 +/- 0.02, [TCEair]/[TCEwater], consistent with Henry's law. To eliminate experimental problems associated with TCE volatility and partitioning, a no-headspace bottle assay was developed, allowing for direct and accurate determinations of aqueous TCE concentration. By this assay procedure, apparent Ks and Vmax values determined for TCE degradation by intact cells were 3 microM and 8 nmol/min per mg of protein, respectively. Following a transient lag period, P. cepacia G4 degraded TCE at concentrations of at least 300 microM with no apparent retardation in rate. Consistent with Ks values determined for degradation, TCE significantly inhibited phenol degradation.  相似文献   

7.
Pseudomonas cepacia G4 grown in chemostats with phenol demonstrated constant specific degradation rates for both phenol and trichloroethylene (TCE) over a range of dilution rates. Washout of cells from chemostats was evident at a dilution rate of 0.2 h-1 at 28 degrees C. Increased phenol concentrations in the nutrient feed led to increased biomass production with constant specific degradation rates for both phenol and TCE. The addition of lactate to the phenol feed led to increased biomass production but lowered specific phenol and TCE degradation rates. The maximum potential for TCE degradation was about 1.1 g per day per g of cell protein. Cell growth and degradation kinetic parameters were used in the design of a recirculating bioreactor for TCE degradation. In this reactor, the total amount of TCE degraded increased as either reaction time or biomass was increased. TCE degradation was observed up to 300 microM TCE with no significant decreases in rates. On the average, this reactor was able to degrade 0.7 g of TCE per day per g of cell protein. These results demonstrate the feasibility of TCE bioremediation through the use of bioreactors.  相似文献   

8.
Pseudomonas cepacia G4 grown in chemostats with phenol demonstrated constant specific degradation rates for both phenol and trichloroethylene (TCE) over a range of dilution rates. Washout of cells from chemostats was evident at a dilution rate of 0.2 h-1 at 28 degrees C. Increased phenol concentrations in the nutrient feed led to increased biomass production with constant specific degradation rates for both phenol and TCE. The addition of lactate to the phenol feed led to increased biomass production but lowered specific phenol and TCE degradation rates. The maximum potential for TCE degradation was about 1.1 g per day per g of cell protein. Cell growth and degradation kinetic parameters were used in the design of a recirculating bioreactor for TCE degradation. In this reactor, the total amount of TCE degraded increased as either reaction time or biomass was increased. TCE degradation was observed up to 300 microM TCE with no significant decreases in rates. On the average, this reactor was able to degrade 0.7 g of TCE per day per g of cell protein. These results demonstrate the feasibility of TCE bioremediation through the use of bioreactors.  相似文献   

9.
A fluorescence-based assay was developed to estimate soluble methane monooxygenase (sMMO) activity in solution. Whole cells of Methylosinus trichosporium OB3b expressing sMMO were used to oxidize various compounds to screen for fluorescent products. Of the 12 compounds tested, only coumarin yielded a fluorescent product. The UV absorbance spectrum of the product matches that of 7-hydroxycoumarin, and this identification was confirmed by 13C-NMR spectroscopy. The dependence of the fluorescent reaction on sMMO activity was investigated by pre-incubation with acetylene, a known inhibitor of sMMO activity. Apparent kinetic parameters for whole cells were determined to be Km(app)=262 microM and Vmax(app)=821 nmol 7-hydroxycoumarin min(-1) mg protein(-1). The rate of coumarin oxidation by sMMO correlates well with those of trichloroethylene degradation and naphthalene oxidation. Advantages of the fluorescence-based coumarin oxidation assay over the naphthalene oxidation assay include a more stable product, direct detection of the product without additional reagents, and greater speed and convenience.  相似文献   

10.
An in vitro degradation of bilirubin by isolated human granulocytes and lymphocytes is described. Changes in the bilirubin concentration during interaction with these cells were determined spectrophotometrically. The dependence of the reaction velocity on the original bilirubin concentration followed an adsorption isotherm, typical of enzyme processes with a Km of 79 microM at a cell concentration of 500/microL. The primary event is the adsorption of bilirubin to the cell surface and, in addition, its detoxication. Cyanide and sonic treatment of cells inhibit the reaction, salicylic acid enhances the cell activity. The bilirubin-detoxicating effect is discussed with respect to the therapy of hyperbilirubinaemia in neonates.  相似文献   

11.
Whole cells of Pseudomonas putida containing toluene dioxygenase were able to remove all detectable trichloroethylene (TCE) from assay mixtures. The capacity of cells to remove TCE was 77 microM/mg of protein with an initial rate of removal of 5.2 nmol/min/ng of protein. TCE oxidation resulted in a decrease in the growth rate of cultures and caused rapid cell death. Addition of dithiothreitol to assay mixtures increased the TCE removal capacity of cells by up to 67% but did not prevent TCE-mediated cell death. TCE induced toluene degradation by whole cells to a rate approximately 40% of that induced by toluene itself.  相似文献   

12.
Vanadate stimulates the liberation of H2S from cysteine in intact cells of baker's yeast (Saccharomyces cerevisiae) with a maximal increase of 60% at 10 microM NH4VO3. Protein separation from crude yeast extract yielded two active protein fractions which were found to catalyze the degradation of cysteine to H2S, pyruvate and ammonia or H2S and serine, respectively, thus characterizing them as cysteine desulphydrase and serine sulphydrase. Only the latter enzyme was found to be activated by vanadate, showing optimal enhancement of about 100% at 10 microM NH4VO3.  相似文献   

13.
Inhibition of protein degradation in isolated rat hepatocytes   总被引:6,自引:6,他引:0       下载免费PDF全文
1. Isolated parenchymal cells were prepared by collagenase perfusion of livers from fed rats that had been previously injected with [3H]leucine to label liver proteins. When these cells were incubated in a salts medium containing glucose, gelatin and EDTA, cellular integrity was maintained over a period of 6h. 2. Cells incubated in the presence of 2mm-leucine to minimize radioactive isotope reincorporation released [3H]leucine into the medium at a rate accounting for the degradation of 4.5% of the labelled cell protein per h. 3. Degradation of [3H]protein in these cells was inhibited by insulin and by certain amino acids, of which tryptophan and phenylalanine were the most effective. 4. Protein degradation was decreased by several proteinase inhibitors, particularly those that are known to inhibit lysosomal cathepsin B, and by inhibitors of cell-energy production. 5. Ammonia inhibited degradation, but only at concentrations above 1.8mm. Aliphatic analogues of ammonia were effective at lower concentrations than was ammonia. 6. High concentrations of ammonia inhibited degradation by 50%. The extent of this inhibition could not be increased further by the addition of the cathepsin B inhibitor leupeptin, which by itself inhibited degradation by approx. 30%. 7. The sensitivity of proteolysis in isolated hepatocytes to these various inhibitory agents is discussed in relation to their possible modes of action.  相似文献   

14.
This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar (8 to 10 nmol day-1), but [14C]TCE mineralization (biodegradation to 14CO2) by ammonia oxidizers was significantly greater than that by methanotrophs (63 versus 53%). Under psychrophilic conditions, [14C]TCE mineralization in flask systems by ammonia oxidizers and methanotrophs was reduced to 12 and 5%, respectively. In mesophilic batch exchange columns, average TCE biodegradation rates for methanotrophs (900 nmol liter-1 day-1) were not significantly different from those of ammonia oxidizers (775 nmol liter-1 day-1). Psychrophilic TCE biodegradation rates in the columns were similar with both biostimulants and averaged 145 nmol liter-1 day-1. Methanotroph biostimulation was most adversely affected by low temperatures. At 12 degrees C, the biodegradation efficiencies (TCE degradation normalized to microbial activity) of methanotrophs and ammonia oxidizers decreased by factors of 2.6 and 1.6, respectively, relative to their biodegradation efficiencies at 24 degrees C. Collectively, these experiments demonstrated that in situ bioremediation of TCE is feasible at the psychrophilic temperatures common in surficial aquifers in the northern United States and that for such applications biostimulation of ammonia oxidizers could be more effective than has been previously reported.  相似文献   

15.
Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was observed with the E. coli recombinant strain. In contrast, P. putida F39/D, a mutant strain of P. putida F1 that does not contain cis-toluene dihydrodiol dehydrogenase, showed a much faster initial rate of trichloroethylene degradation which decreased over time.  相似文献   

16.
Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was observed with the E. coli recombinant strain. In contrast, P. putida F39/D, a mutant strain of P. putida F1 that does not contain cis-toluene dihydrodiol dehydrogenase, showed a much faster initial rate of trichloroethylene degradation which decreased over time.  相似文献   

17.
We investigated the effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of large unilamellar liposomes by rat Kupffer cells in maintenance culture. The phospholipid vesicles were labeled in the lipid moiety with phosphatidyl[14C]choline and contained [3H]inulin or [125I]iodoalbumin as nondegradable and degradable markers of the aqueous vesicle content, respectively. Cytochalasin B and dihydrocytochalasin B, inhibitors of microfilament function, reduced inert inulin label uptake by 75% maximally, but residual uptake was not followed by release of lipid degradation products from the cells. By contrast, colchicine, an inhibitor of microtubule assembly, reduced uptake of liposomal inulin by maximally 55% but could not inhibit release of lipid degradation products from the cells. It is concluded that the cytochalasins partly inhibit uptake but fully prevent the arrival of internalized liposomes in the lysosomal compartment, while the action of colchicine is to slow down the overall process of uptake and subsequent transportation to the lysosomes. Monensin reduced inulin uptake to an extent similar to that found with colchicine, but reversibly blocked degradation of liposomal lipid and encapsulated protein. The kinetics of degradation of liposomal constituents suggests that residual uptake in the presence of monensin represents accumulation in an intracellular compartment. Trifluoperazine did not affect binding, internalization or degradation of encapsulated protein at low concentration (6 microM), but completely inhibited release of liposomal lipid degradation products under these conditions. At intermediate concentration (14 microM), the drug also reduced the internalization, while a high concentration (22 microM) was required to inhibit protein degradation as well. We conclude that trifluoperazine has multiple sites of action in the uptake and processing of liposomal constituents by Kupffer cells.  相似文献   

18.
Effects of biochemical factors, i.e., medium components and metabolic byproducts, on growth of Chinese hamster ovary (CHO) cells were investigated. Glucose and ammonia were found to inhibit the growth. Kinetic analysis gave the inhibition constants, 0.14 g l-1 for ammonia and 5.0 g l-1 for glucose. Since glutamine was unstable and was a main source of ammonia, precise studies on glutamine degradation and ammonia formation process were done. By evaluating the spontaneous reactions, net glutamine utilization and net ammonia production by the cells could be estimated. It became evident that asparagine could support the growth of CHO cells as a stable substitute for glutamine. Then, a glucose fed-batch culture was grown on a glutamine free and asparagine supplemented medium. Because of (1) low glucose concentration, but (2) no glucose limitation and (3) low ammonia accumulation, the maximum total cell concentration reached 3.4 x 10(6) ml-1, which was 1.8 times greater than that in the control experiment (initial 1.15 g l-1 glucose and 0.29 g l-1 glutamine, and no glucose feed).  相似文献   

19.
20.
HeLa cells, injected with radioiodinated proteins by fusion with RBC ghosts, were exposed to inhibitors of lysosomal proteolysis and autophagy. The degradation of injected [125I]bovine serum albumin (BSA) was unaffected by chloroquine, NH4Cl, nocodazole, colcemid, puromycin, cycloheximide, or enucleation. Although degradation of [125I]lactate dehydrogenase (LDH) and [125I]pyruvate kinase (PK) was inhibited one-third by chloroquine or ammonia, their degradation was unaffected by the other compounds. In contrast, enhanced degradation of 125I-PK resulting from depriving injected HeLa cells of amino acids and serum was inhibited 70% by colcemid and abolished by chloroquine or ammonia. Similarly, degradation of [14C]sucrose-labeled BSA-polylysine conjugates that entered HeLa cells by endocytosis was inhibited as much as 80% by chloroquine and ammonia. Sensitivity of both enhanced proteolysis and degradation of exogenous proteins to ammonia or chloroquine indicates they are effective inhibitors of lysosomal proteolysis in HeLa cells. Failure of ammonia or chloroquine to inhibit degradation of injected 125I-BSA and the modest inhibition of degradation of injected 125I-LDH or 125I-PK indicates that virtually all BSA molecules and most PK or LDH molecules are degraded by a nonlysosomal proteolytic system. Components of this degradative system are present in vast excess or are long lived, since inhibition of protein synthesis for 20 hr had no effect on the degradation of injected proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号