首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumorigenesis in neurofibromatosis: new insights and potential therapies   总被引:1,自引:0,他引:1  
The neurofibromatoses NF1 and NF2 are inherited cancer predisposition syndromes in which affected individuals are prone to development of mostly benign, but occasionally malignant, tumors. The NF1 and NF2 genes function as tumor suppressor genes (negative growth regulators), such that their loss of expression predisposes to tumor formation. Neurofibromin, the protein product of the NF1 gene, acts as a negative regulator of the ras proto-oncogene, to reduce cell growth. Merlin, the NF2 gene product, is involved in regulating cell proliferation and motility, and probably plays a role in integrating multiple cell-signaling pathways. By understanding the function of these tumor suppressors, we have a unique opportunity to develop targeted pharmacotherapeutic interventions for these disorders.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
The ubiquitous NF‐Y gene regulates the expression of different genes in various signaling pathways. However, the function of NF‐Y in zebrafish heart development is largely unknown. Previously we identified a same group of cell cycle related gene cluster (CCRG) was downregulated in the embryonic hearts with impeded growth due to various stresses. The promoter regions of these CCRG genes shared a most common motif for NF‐Y. Chromatin immunoprecipitation experiment demonstrated that the binding of NF‐Y to its motif was real on the CCRG candidate gene promoters. Knockdown of embryonic NF‐Y by morpholinos led to a small heart, mimicking the abnormal heart phenotype caused by other stresses. In parallel the expression of certain CCRG candidate genes was reduced in the NF‐Y A morphant hearts exposed to malignant environments. Absence of NF‐Y A also led to undermine cardiomyocyte proliferation and hence less total number of caridomyocytes per heart. Trans‐AM Elisa experiment also found that in the presence of the stresses such as TCDD and TNNT2 MO, the binding capacity of NF‐Y A subunit to its core motif was reduced. We conclude that NF‐Y sustains proper cardiomyocyte proliferation in the heart, thus it plays a positive role in promoting early zebrafish heart growth.  相似文献   

12.
Biallelic mutations in the neurofibromatosis 2 (NF2) gene are linked to schwannoma and meningioma tumorigenesis. Cells with NF2 mutations exhibit elevated levels of phosphorylated extracellular signal-regulated kinase (ERK) and aberrant cell-cell and cell-matrix contacts. The NF2 gene product, merlin, associates with adherens junction protein complexes, suggesting that part of its function as a tumor suppressor involves regulating cell junctions. Here, we find that a novel PDZ protein, called erbin, binds directly to the merlin-binding partner, EBP0, and regulates adherens junction dissociation through a MAP kinase-dependent mechanism. Reducing erbin expression using a targeted siRNA in primary cultures of Schwann cells results in altered cell-cell interactions, disruption of E-cadherin adherens junctions, increased cell proliferation, and elevated levels of phosphorylated ERK, all phenotypes observed in cells that lack merlin. Reduction of erbin expression also results in the dissociation of merlin from adherens junction proteins and an increase in the levels of phosphorylated merlin. These phenotypes can be rescued if cells with reduced levels of erbin are treated with a pharmacological inhibitor of ERK kinase. Collectively, these data indicate that erbin regulates MAP kinase activation in Schwann cells and suggest that erbin links merlin to both adherens junction protein complexes and the MAP kinase signaling pathway.  相似文献   

13.
Neurofibromatosis type 1 (NF1) is one of the most common human genetic disorders and is associated with significant morbidity and mortality. The gene responsible for this disorder, NF1, encodes neurofibromin, which can function to down-regulate ras activity. Mutations that inactivate NF7 result in elevated levels of ras signaling and increased cell proliferation in some tissues. NF7 functions as a tumor suppressor gene; patients inherit one mutated copy and are believed to acquire a "second hit" in tissues that go on to form benign or malignant tumors. NF7 is expressed widely, yet certain tissues are more susceptible to growth dysregulation in NF1 patients. Cardiovascular defects also contribute to NF1, though the cause remains unclear. In a recent study, we used tissue-specific gene inactivation in mice to study the role of neurofibromin in heart development. A further understanding of neurofibromin function will help to elucidate the pathophysiology of NF1 and will also lead to a better understanding of cell cycle regulation and ras pathways in specific cell types. Finally, we comment on how similar genetic strategies can be used in mice to study the role of additional signaling pathways involved in heart development.  相似文献   

14.
15.
Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, a negative regulator of Ras. Neurofibromin is implicated in the neuronal abnormality of NF1 patients; however, the precise cellular function of neurofibromin has yet to be clarified. Using proteomic strategies, we identified a set of neurofibromin-associating cellular proteins, including axon regulator CRMP-2 (Collapsin response mediator protein-2). CRMP-2 directly bound to the C-terminal domain of neurofibromin, and this association was regulated by the manner of CRMP-2 phosphorylation. In nerve growth factor-stimulated PC12 cells, neurofibromin and CRMP-2 co-localized particularly on the distal tips and branches of extended neurites. Suppression of neurofibromin using NF1 small interfering RNA significantly inhibited this neurite outgrowth and up-regulated a series of CRMP-2 phosphorylations by kinases identified as CDK5, GSK-3b, and Rho kinase. Overexpression of the NF1-RAS-GAP-related domain rescued these NF1 small interfering RNA-induced events. Our results suggest that neurofibromin regulates neuronal differentiation by performing one or more complementary roles. First, neurofibromin directly regulates CRMP-2 phosphorylation accessibility through the complex formation. Also, neurofibromin appears to indirectly regulate CRMP-2 activity by suppressing CRMP-2-phosphorylating kinase cascades via its Ras-GAP function. Our study demonstrates that the functional association of neurofibromin and CRMP-2 is essential for neuronal cell differentiation and that lack of expression or abnormal regulation of neurofibromin can result in impaired function of neuronal cells, which is likely a factor in NF1-related pathogenesis.  相似文献   

16.
Meningiomas are benign tumors of the central nervous system. Although usually sporadic, they can occur in patients affected by the autosomal dominant syndrome, neurofibromatosis type 2 (NF2). The NF2 gene has recently been isolated from chromosome 22. The presence of germline mutations in NF2 patients and the loss of heterozygosity (LOH) on 22q in NF2 tumors support the hypothesis that the NF2 gene acts as a tumor suppressor. Cytogenetic and LOH studies have suggested that the gene responsible for the development of meningiomas is located in the region of 22q in which the NF2 gene maps. The meningioma gene could therefore be the NF2 gene itself. Recently, somatic mutations of the NF2 gene have been identified in sporadic meningiomas, thus supporting the hypothesis that the NF2 gene is also important in meningioma pathogenesis. In this study, we analyzed sixty-one sporadic meningiomas for LOH of 22q and for mutations in the NF2 gene. LOH was detected in 36 of the 60 informative tumors. Single-strand conformational polymorphism analysis was used to identify nine mutations in five of the eight exons of the NF2 gene studied. The nine tumors with an altered NF2 gene also showed LOH for 22q markers. These results further support the hypothesis that mutations in the NF2 gene are a critical pathogenetic event in at least some meningiomas.  相似文献   

17.
18.
Lee JD  Kwon TJ  Kim UK  Lee WS 《PloS one》2012,7(1):e30418

Background

Mutations in the neurofibromatosis type 2 (NF2) tumor-suppressor gene have been identified in not only NF2-related tumors but also sporadic vestibular schwannomas (VS). This study investigated the genetic and epigenetic alterations in tumors and blood from 30 Korean patients with sporadic VS and correlated these alterations with tumor behavior.

Methodology/Principal Findings

NF2 gene mutations were detected using PCR and direct DNA sequencing and three highly polymorphic microsatellite DNA markers were used to assess the loss of heterozygosity (LOH) from chromosome 22. Aberrant hypermethylation of the CpG island of the NF2 gene was also analyzed. The tumor size, the clinical growth index, and the proliferative activity assessed using the Ki-67 labeling index were evaluated. We found 18 mutations in 16 cases of 30 schwannomas (53%). The mutations included eight frameshift mutations, seven nonsense mutations, one in-frame deletion, one splicing donor site, and one missense mutation. Nine patients (30%) showed allelic loss. No patient had aberrant hypermethylation of the NF2 gene and correlation between NF2 genetic alterations and tumor behavior was not observed in this study.

Conclusions/Significance

The molecular genetic changes in sporadic VS identified here included mutations and allelic loss, but no aberrant hypermethylation of the NF2 gene was detected. In addition, no clear genotype/phenotype correlation was identified. Therefore, it is likely that other factors contribute to tumor formation and growth.  相似文献   

19.
Members of the Ras superfamily of signaling proteins modulate fundamental cellular processes by cycling between an active GTP-bound conformation and an inactive GDP-bound form. Neurofibromin, the protein product of the NF1 tumor suppressor gene, and p120GAP are GTPase-activating proteins (GAPs) for p21(Ras) (Ras) and negatively regulate output by accelerating GTP hydrolysis on Ras. Neurofibromin and p120GAP differ markedly outside of their conserved GAP-related domains (GRDs), and it is therefore unknown if the respective GRDs contribute functional specificity. To address this question, we expressed the GRDs of neurofibromin and p120GAP in primary cells from Nf1 mutant mice in vitro and in vivo. Here we show that expression of neurofibromin GRD, but not the p120GAP GRD, restores normal growth and cytokine signaling in three lineages of primary Nf1-deficient cells that have been implicated in the pathogenesis of neurofibromatosis type 1 (NF1). Furthermore, utilizing a GAP-inactive mutant NF1 GRD identified in a family with NF1, we demonstrate that growth restoration is a function of NF1 GRD GAP activity on p21(Ras). Thus, the GRDs of neurofibromin and p120GAP specify nonoverlapping functions in multiple primary cell types.  相似文献   

20.
LB Murray  YK Lau  Q Yu 《PloS one》2012,7(8):e43295
Merlin is encoded by the neurofibromatosis type 2 (NF2) gene and is a member of the Band 4.1 protein family. This protein acts as a linker that connects cell surface proteins to the actin cytoskeleton. Defects caused by mutations of the NF2 gene give rise to NF2 disease, which is generally characterized by the formation of bilateral vestibular schwannomas and, to a lesser extent, meningiomas and ependymomas. In addition to these tumor types, NF2 is mutated and/or merlin expression is reduced or lost in numerous non-NF2 associated tumors, including melanoma. However, the role of merlin in human melanoma growth and the mechanism underlying its effect are currently unknown. In the present study, we show that merlin knockdown enhances melanoma cell proliferation, migration, and invasion in vitro and that decreased merlin expression promotes subcutaneous melanoma growth in immunocompromised mice. Concordantly, we find that increased expression of merlin in a metastatic melanoma cell line reduced their in vitro migration and proliferation, and diminished their ability to grow in an anchorage independent manner. Increased merlin expression also inhibits in vivo growth of these melanoma cells. Lastly, we demonstrate that higher merlin levels in human melanoma cells promote the H(2)O(2)-induced activation of MST1/2 Ser/Thr kinases, which are known tumor suppressors in the Hippo signaling pathway. Taken together, these results provide for the first time evidence that merlin negatively regulates human melanoma growth, and that loss of merlin, or impaired merlin function, results in an opposite effect. In addition, we show that increased merlin expression leads to enhanced activation of the MTS1/2 kinases, implying the potential roles of MST1/2 in mediating the anti-melanoma effects of merlin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号