首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA)-15 is an anti-apoptotic protein whose expression is increased in several cancer cells and following experimental skin carcinogenesis. Exposure of untransfected C5N keratinocytes and transfected HEK293 cells to phorbol esters (12-O-tetradecanoylphorbol-13-acetate (TPA)) increased PED/PEA-15 cellular content and enhanced its phosphorylation at serine 116 in a time-dependent fashion. Ser-116 --> Gly (PED(S116G)) but not Ser-104 --> Gly (PED(S104G)) substitution almost completely abolished TPA regulation of PED/PEA-15 expression. TPA effect was also prevented by antisense inhibition of protein kinase C (PKC)-zeta and by the expression of a dominant-negative PKC-zeta mutant cDNA in HEK293 cells. Similar to long term TPA treatment, overexpression of wild-type PKC-zeta increased cellular content and phosphorylation of WT-PED/PEA-15 and PED(S104G) but not of PED(S116G). These events were accompanied by the activation of Ca2+-calmodulin kinase (CaMK) II and prevented by the CaMK blocker, KN-93. At variance, the proteasome inhibitor lactacystin mimicked TPA action on PED/PEA-15 intracellular accumulation and reverted the effects of PKC-zeta and CaMK inhibition. Moreover, we show that PED/PEA-15 bound ubiquitin in intact cells. PED/PEA-15 ubiquitinylation was reduced by TPA and PKC-zeta overexpression and increased by KN-93 and PKC-zeta block. Furthermore, in HEK293 cells expressing PED(S116G), TPA failed to prevent ubiquitin-dependent degradation of the protein. Accordingly, in the same cells, TPA-mediated protection from apoptosis was blunted. Taken together, our results indicate that TPA increases PED/PEA-15 expression at the post-translational level by inducing phosphorylation at serine 116 and preventing ubiquitinylation and proteosomal degradation.  相似文献   

2.
Stimulation of hemopoietic cells with IL-3, IL-4, IL-5, granulocyte-macrophage-CSF and Steel factor-(SLF) induced tyrosine phosphorylation of a number of protein substrates. Two of these proteins, designated p42 and p44, were tyrosine phosphorylated rapidly in response to treatment with IL-3, IL-5, granulocyte-macrophage-CSF and SLF, but not IL-4. We demonstrate that these common substrates are members of the mitogen-activated protein kinase (MAP kinase) family of protein serine/threonine kinases. Ion-exchange chromatography yielded a peak of MAP kinase activity eluting at 0.3 to 0.32 M NaCl. Immunoblotting of column fractions with antiphosphotyrosine antibodies showed coelution of the peak of MAP kinase enzyme activity with the p42 and p44 tyrosine phosphorylated species, and with two proteins of 42 and 44 kDa which were immunoreactive with anti-MAP kinase antibodies. Moreover, a characteristic shift in mobility of the p42 and p44 species was observed after factor treatment. Time-course analyses and subsequent ion-exchange chromatography demonstrated SLF activation of MAP kinase activity was maximal after 2 min of factor treatment and decreased to basal levels after 30 min stimulation. By contrast, activation of MAP kinase after IL-5 treatment was not as rapid. Maximal activity was observed 15 min after stimulation and remained elevated for up to 60 min after IL-5 addition. Investigation of the role of protein kinase C in the mechanism of activation by these growth factors demonstrated that specific inhibition of protein kinase C led to a reduction, but not ablation, of the SLF and IL-3 induced stimulation of MAP kinase activity. The use of synthetic peptide substrates confirmed SLF and IL-5 activate isoforms of MAP kinases. These results demonstrate that members of the MAP kinase family are involved in common signal transduction events elicited by IL-3, IL-5, granulocyte-macrophage-CSF and Steel factor, but not those involving IL-4.  相似文献   

3.
Mitogen-activated protein (MAP) kinases comprise an evolutionarily conserved family of proteins that includes at least three vertebrate protein kinases (p42, p44, and p55 MAPK) and five yeast protein kinases (SPK1, MPK1, HOG1, FUS3, and KSS1). Members of this family are activated by a variety of extracellular agents that influence cellular proliferation and differentiation. In Saccharomyces cerevisiae, there are multiple physiologically distinct MAP kinase activation pathways composed of structurally related kinases. The recently cloned vertebrate MAP kinase activators are structurally related to MAP kinase activators in these yeast pathways. These similarities suggest that homologous kinase cascades are utilized for signal transduction in many, if not all, eukaryotes. We have identified additional members of the MAP kinase activator family in Xenopus laevis by a polymerase chain reaction-based analysis of embryonic cDNAs. One of the clones identified (XMEK2) encodes a unique predicted protein kinase that is similar to the previously reported activator (MAPKK) in X. laevis. XMEK2, a highly expressed maternal mRNA, is developmentally regulated during embryogenesis and expressed in brain and muscle. Expression of XMEK2 in yeast cells suppressed the growth defect associated with loss of the yeast MAP kinase activator homologs, MKK1 and MKK2. Partial sequence of a second cDNA clone (XMEK3) identified yet another potential MAP kinase activator. The pattern of expression of XMEK3 is distinct from that of p42 MAPK and XMEK2. The high degree of amino acid sequence similarity of XMEK2, XMEK3, and MAPKK suggests that these three are related members of an amphibian family of protein kinases involved in the activation of MAP kinase. Discovery of this family suggests that multiple MAP kinase activation pathways similar to those in yeast cells exist in vertebrates.  相似文献   

4.
The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)-->Gly (PED(S116-->G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116-->G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116-->G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.  相似文献   

5.
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos.  相似文献   

6.
7.
To better understand the molecular mechanisms for hyperglycemia-induced proatherogenic changes in endothelial cells, the effect of high glucose on activation of members of the mitogen-activated protein kinase (MAPK) family, including c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase (ERK)-1, -2, and -5, and p38 kinase, was examined in bovine pulmonary artery endothelial cells (PAEC). Glucose, fructose, and raffinose induced a concentration-dependent decrease in PAEC growth. Addition of 25 mM glucose, fructose, or raffinose to normal growth medium stimulated an approximately twofold increase in JNK1 activity that was maximal after 24 h, whereas only glucose markedly increased ERK5 activity. Neither ERK1/2 nor p38 kinase activity was increased by glucose, fructose, or raffinose. The antioxidant N-acetylcysteine partially abrogated the glucose-induced increase in ERK5 activity but had no effect on the increase in JNK1 activity. In contrast, azaserine, which prevents increased flux through the hexosamine pathway, decreased glucose-induced JNK1 activity but had no effect on fructose- or raffinose-induced JNK1 activity. Consistent with this finding, glucosamine stimulated a 2.4-fold increase in JNK1 activity and reproduced the inhibitory effect of glucose on PAEC growth. In summary, glucose activates different members of the MAPK family in PAEC via distinct mechanisms. Moreover, the correlation between the ability of different sugars to activate JNK1 and inhibit cell growth suggests that activation of this signaling pathway may contribute to the growth inhibitory effect of glucose in endothelial cells.  相似文献   

8.
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway.  相似文献   

9.
We have used differential display to identify genes whose expression is altered in type 2 diabetes thus contributing to its pathogenesis. One mRNA is overexpressed in fibroblasts from type 2 diabetics compared with non-diabetic individuals, as well as in skeletal muscle and adipose tissues, two major sites of insulin resistance in type 2 diabetes. The levels of the protein encoded by this mRNA are also elevated in type 2 diabetic tissues; thus, we named it PED for phosphoprotein enriched in diabetes. PED cloning shows that it encodes a 15 kDa phosphoprotein identical to the protein kinase C (PKC) substrate PEA-15. The PED gene maps on human chromosome 1q21-22. Transfection of PED/PEA-15 in differentiating L6 skeletal muscle cells increases the content of Glut1 transporters on the plasma membrane and inhibits insulin-stimulated glucose transport and cell-surface recruitment of Glut4, the major insulin-sensitive glucose transporter. These effects of PED overexpression are reversed by blocking PKC activity. Overexpression of the PED/PEA-15 gene may contribute to insulin resistance in glucose uptake in type 2 diabetes.  相似文献   

10.
11.
Human members of the eukaryotic protein kinase family   总被引:1,自引:1,他引:0  
Kostich M  English J  Madison V  Gheyas F  Wang L  Qiu P  Greene J  Laz TM 《Genome biology》2002,3(9):research0043.1-research004312
  相似文献   

12.
13.
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) is overexpressed in several tissues of individuals affected by type 2 diabetes. In intact cells and in transgenic animal models, PED/PEA-15 overexpression impairs insulin regulation of glucose transport, and this is mediated by its interaction with the C-terminal D4 domain of phospholipase D1 (PLD1) and the consequent increase of protein kinase C-alpha activity. Here we show that interfering with the interaction of PED/PEA-15 with PLD1 in L6 skeletal muscle cells overexpressing PED/PEA-15 (L6(PED/PEA-15)) restores insulin sensitivity. Surface plasmon resonance and ELISA-like assays show that PED/PEA-15 binds in vitro the D4 domain with high affinity (K(D) = 0.37 +/- 0.13 mum), and a PED/PEA-15 peptide, spanning residues 1-24, PED-(1-24), is able to compete with the PED/PEA-15-D4 recognition. When loaded into L6(PED/PEA-15) cells and in myocytes derived from PED/PEA-15-overexpressing transgenic mice, PED-(1-24) abrogates the PED/PEA-15-PLD1 interaction and reduces protein kinase C-alpha activity to levels similar to controls. Importantly, the peptide restores insulin-stimulated glucose uptake by approximately 70%. Similar results are obtained by expression of D4 in L6(PED/PEA-15). All these findings suggest that disruption of the PED/PEA-15-PLD1 molecular interaction enhances insulin sensitivity in skeletal muscle cells and indicate that PED/PEA-15 as an important target for type 2 diabetes.  相似文献   

14.
While murine B- and T-lymphopoiesis require overlapping molecules, they occur in separate organs: the bone marrow (BM) and the thymus, respectively. The BM microenvironment is incapable of supporting T-lymphopoiesis because of insufficient interactions of Notch1 with delta-like ligand (Dll). Notch1/Dll interactions also play a role in the suppression of B-lymphopoiesis in the thymus. However, it is still unclear whether the Notch1/Dll interaction alone explains why the thymus does not support B-lymphopoiesis. In this study, we compared the precursor population colonizing the thymus with that in the BM by culturing them on stromal cells expressing abundant Dll1. We demonstrated that Flt3(+) Il7r(+) B220(+) Cd19(+) BM cells gave rise to B cells under this condition. We defined them as resistant to Dll1. In the thymus, Dll1-resistant cells were undetectable. This suggested that the absence of Dll1-resistant cells might explain the absence of B-lymphopoiesis in the thymus.  相似文献   

15.
16.
Mitogen-activated protein kinase (MAPK) 3/MAPK1 (also known as ERK1/ERK2) plays an important role in the signal transduction pathways. To our knowledge, however, its role in the development of testicular ischemia-reperfusion injury has not yet been investigated. Therefore, we studied the pattern of MAPK3/MAPK1 activation in a experimental model of testicular ischemia-reperfusion injury. We also investigated MAPK8 to understand whether an association exists between these two MAPKs. Adult male Sprague-Dawley rats were subjected to 1 h of testicular ischemia followed by 24 h of reperfusion or to a sham testicular ischemia-reperfusion. Animals were randomized to receive PD98059, which is an inhibitor of MAPK3/MAPK1 (10 mg/kg i.p. administered immediately after detorsion), or its vehicle. The time course of MAPK3/MAPK1, MAPK8, and tumor necrosis factor (TNF; also known as TNF alpha) expression and a histological examination in both the ischemic-reperfused testis and the contralateral one were performed. In both testes, MAPK3/MAPK1 and MAPK8 expression appeared following 10 min of reperfusion and reached their highest activation after 30 min. The MAPK levels slowly decreased, and no significant expression of either kinase was observed following 2 h of reperfusion. Expression of TNF was evident after 1 h of reperfusion and reached its maximum increase after 3 h. PD98059 blunted MAPK3/MAPK1 and MAPK8, reduced TNF expression, and improved the testicular damage caused by ischemia-reperfusion injury in both testes. These data emphasize that MAPK3/MAPK1 has a role in testicular damage and that its blockade might have a future therapeutic role for the management of patients with unilateral testicular torsion.  相似文献   

17.
p90 ribosomal S6 kinases (RSKs), containing two distinct kinase catalytic domains, are phosphorylated and activated by extracellular signal-regulated kinase (ERK). The amino-terminal kinase domain (NTD) of RSK phosphorylates exogenous substrates, whereas the carboxyl-terminal kinase domain (CTD) autophosphorylates Ser-386. A conserved putative autoinhibitory alpha helix is present in the carboxyl-terminal tail of the RSK isozymes ((697)HLVKGAMAATYSALNR(712) of RSK2). Here, we demonstrate that truncation (Delta alpha) or mutation (Y707A) of this helix in RSK2 resulted in constitutive activation of the CTD. In vivo, both mutants enhanced basal Ser-386 autophosphorylation by the CTD above that of wild type (WT). The enhanced Ser-386 autophosphorylation was attributed to disinhibition of the CTD because a CTD dead mutation (K451A) eliminated Ser-386 autophosphorylation even in conjunction with Delta alpha and Y707A. Constitutive activity of the CTD appears to enhance NTD activity even in the absence of ERK phosphorylation because basal phosphorylation of S6 peptide by Delta alpha and Y707A was approximately 4-fold above that of WT. A RSK phosphorylation motif antibody detected a 140-kDa protein (pp140) that was phosphorylated upon epidermal growth factor or insulin treatment. Ectopic expression of Delta alpha or Y707A resulted in increased basal phosphorylation of pp140 compared with that of WT, presenting the possibility that pp140 is a novel RSK substrate. Thus, it is clear that the CTD regulates NTD activity in vivo as well as in vitro.  相似文献   

18.
G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7. Also, MKK4 activation by the alpha1B-adrenergic receptor/Galphaq required c-Src and Rho family small GTPases. Furthermore, activation of the alpha1B-adrenergic receptor stimulated JNK activity through Src family tyrosine kinases and Rho family small GTPases in hamster smooth muscle cells that natively express the alpha1B-adrenergic receptor. Together, these results suggest that the alpha1B-adrenergic receptor/Galphaq may up-regulate JNK activity through a MKK4 pathway dependent on c-Src and Rho family small GTPases in mammalian cells.  相似文献   

19.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

20.
Kong F  Wang J  Cheng L  Liu S  Wu J  Peng Z  Lu G 《Gene》2012,499(1):108-120
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号