首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

The diagnosis of ankylosing spondylitis is made from a combination of clinical features and the presence of radiographic evidence that may be detected only after many years of inflammatory back pain. It is not uncommon to have a diagnosis confirmed 5 to 10 years after the initial onset of symptoms. Development of a more-sensitive molecular imaging technology to detect structural changes in the joints would lead to earlier diagnosis and quantitative tracking of ankylosis progression. Progressive ankylosis (ank/ank) mice have a loss of function in the Ank gene, which codes for a regulator of PPi transport. In this study, we used these ank/ank mutant mice to assess a noninvasive, quantitative measure of joint ankylosis with near-infrared (NIR) molecular imaging in vivo.

Methods

Three age groups (8, 12, and 18 weeks) of ank/ank (15 mice) and wild-type littermates (12 +/+ mice) were assessed histologically and radiographically. Before imaging, OsteoSense 750 (bisphosphonate pamidronate) was injected i.v. Whole-body images were analyzed by using the multispectral Maestro imaging system.

Results

OsteoSense 750 signals in the paw joints were higher in ank/ank mice in all three age groups compared with controls. In the spine, significantly higher OsteoSense 750 signals were detected early, in 8-week-old ank/ank mice compared with controls, although minimal radiographic differences were noted at this time point. The molecular imaging changes in the ank/ank spine (8 weeks) were supported by histologic changes, including calcium apatite crystals at the edge of the vertebral bodies and new syndesmophyte formation.

Conclusions

Changes in joint pathology of ank/ank mice, as evaluated by histologic and radiographic means, are qualitative, but only semiquantitative. In contrast, molecular imaging provides a quantitative assessment. Ankylosis in ank/ank mice developed simultaneously in distal and axial joints, contrary to the previous notion that it is a centripetal process. NIR imaging might be feasible for early disease diagnosis and for monitoring disease progression in ankylosing spondylitis.  相似文献   

2.
Progressive ankylosis (Ank and the human homolog, ANKH) is a transmembrane protein which regulates transport of inorganic pyrophosphate (PPi). ank/ank mice with a mutated ank gene, have calcification and bone ankylosis of the affected joints. In the course of studying these mutant mice, we found that they have microcytosis. These mutant mice have lower mean red blood cell volume (MCV) and lower hemoglobin content in red cells (mean corpuscular hemoglobin, MCH) than normal mice. Using quantitative real-time PCR analysis, we showed that Ank was expressed in the E/Meg bipotent precursor, BFU-E, CFU-E, but there was no Ank expression in the hemoglobinizing erythroblasts. Stable ANKH transfectants in K562 cells highly expressed two immature erythroid cell markers, E-cadherin and endoglin. Enhanced Erythropoietin (Epo) expression and downregulation of SHP-1 were detected in these transfectants. Consequently, the autocrine Epo-EpoR signaling pathway was activated, as evidenced by higher p-Tyr JAK2, p-Tyr EpoR and p-Tyr STAT5B in the ANKH transfectants. Our results revealed a novel function of ANKH in the promotion of early erythroid differentiation in K562 cells. We also showed that ank/ank mice have lower serum levels of Epo than the normal littermates, and this is the likely cause of microcytosis in these mutant mice.  相似文献   

3.
It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone‐implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium‐phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium‐phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X‐ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium‐and phosphorus‐containing particles on untreated and treated disks that were more numerous on fibronectin‐coated disks. These particles were observed earliest (1 week) on RFGD‐pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2–4 weeks; a greater effect was observed for fibronectin‐coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy. J. Cell. Biochem. 114: 1917–1927, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
EXAFS spectra have been recorded above the calcium K edge from bones of mice aged 3 days, 1 week, 1 month, 2 months and 7 months. Spectra indicated that the calcium ion environment in bone mineral changes during development. Results were compared with those obtained from amorphous calcium phosphate and a poorly crystalline hydroxyapatite matured from this amorphous calcium phosphate in the presence of water. Spectra from the older mice closely resembled those of the matured product but those from the younger mice were more like those from the freshly prepared amorphous calcium phosphate.  相似文献   

5.
Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney.  相似文献   

6.
Osteogenin, a bone morphogenetic protein, in conjunction with insoluble collagenous bone matrix initiates local endochondral bone differentiation by induction in vivo. This study, by exploiting the affinity of native osteogenin for hydroxyapatite, was designed to construct a delivery system for the expression of the biologic activity of osteogenin in nonhealing calvarial defects of adult primates. After exposure of the calvaria, 64 cranial defects, 25 mm in diameter, were prepared in 16 adult male baboons (Papio ursinus). Defects were implanted with disks of porous nonresorbable and resorbable hydroxyapatite substrata obtained after hydrothermal conversion of calcium carbonate exoskeletons of corals. In each animal, one disk of each hydroxyapatite preparation was treated with osteogenin isolated and purified from baboon bone matrix after sequential chromatography on heparin-Sepharose, hydroxyapatite, and Sephacryl S-200 gel filtration columns. The remaining two defects were implanted with one disk of each hydroxyapatite preparation without osteogenin as control. Histomorphometry on decalcified sections prepared on days 30 and 90 showed superior osteogenesis in osteogenin-treated nonresorbable hydroxyapatite specimens as compared with controls. On day 90, substantial bone formation also had occurred in control nonresorbable hydroxyapatite specimens. On day 90, but not on day 30, significantly greater amounts of bone had formed in osteogenin-treated resorbable specimens as compared with resorbable controls. Overall, resorbable substrata performed poorly when compared with nonresorbable substrata, perhaps due to a premature dissolution of the implants. These results provide evidence that the biologic activity of osteogenin can be restored and delivered by a substratum other than the organic collagenous matrix, inducing rapid bone differentiation in calvarial defects of adult nonhuman primates. The adsorption strategy of osteogenin on porous inorganic nonimmunogenic substrata may help to design appropriate osteogenic delivery systems for craniofacial and orthopedic applications in humans.  相似文献   

7.
Microstructures of non-unions of human humeral shaft fractures were investigated by using scanning electron microscopy, transmission electron microscopy, and X-ray microdiffraction. The non-union has a trabeculae structural framework similar to woven bone. Among the trabeculae are cavities that are subdivided into small chambers by thin plates of collagen fibrils. Some chambers are filled with variously shaped mineralized particles several micrometers in size. The collagen fibrils in both the trabeculae and the thin plates were only slightly mineralized by hydroxyapatite. Vesicles loaded with noncrystalline calcium phosphate (NCP) were observed in most mineralized particles, and brushite crystals with special morphology were seen to be embedded in some particles in irregular shapes. X-ray microdiffraction results indicated that the mineral phases in the non-unions were mainly NCP in addition to small amounts of hydroxyapatite and brushite. NCP deposition and insufficient mineralization of the collagen fibrils may be two important microstructural features of the non-unions of human humeral shaft fractures different from normally repaired bone callus.  相似文献   

8.
Calcification occurred in the kidney of streptozotocin (STZ)-induced diabetic rats fed a low-zinc diet. The deposits were stained by the von Kossa method and were detected intracellularly in the tubular cells, mainly in the cortico-medullar region. The deposits were found to be a heterogenous substance on electron microscopy. There were various sizes of deposits, and the surfactant was very much distorted. Many deposits grew up to bind small particles, and the core-like substance was observed in the center of the deposit. The component of the deposit was analyzed by an X-ray microanalyzer, and was found to be calcium and phosphorus. The ratio of calcium to phosphorus was 2.159, which coincided with the ratio of standard hydroxyapatite. From these observations, the deposit is believed to be hydroxyapatite. It is thought that the core is formed at first, many particles are then bound to the core, and deposits grow up.  相似文献   

9.
We investigated the effects of different implant biomaterials on cultured canine bone marrow stromal cells (BMSC) undergoing differentiation into osteoblasts (dBMSC). BMSC were isolated from canine humerus by marrow aspiration, cultured and differentiated on calcium phosphate scaffold (CPS), hydroxyapatite, hydroxyapatite in gel form and titanium mesh. We used the MTT method to determine the effects of osteogenic media on proliferation. The characteristics of dBMSC were assessed using alizarin red (AR), immunocytochemistry and osteoblastic markers including alkaline phosphatase/von Kossa (ALP/VK), osteocalcin (OC) and osteonectin (ON), and ELISA. The morphology of dBMSC on the biomaterials was investigated using inverted phase contrast microscopy and scanning electron microscopy. We detected expression of ALP/VK, AR, OC and ON by day 7 of culture; expression increased from day 14 until day 21. CPS supported the best adhesion, cell spreading, proliferation and differentiation of BMSCs. The effects of the biomaterials depended on their surface properties. Expression of osteoblastic markers showed that canine dBMSCs became functional osteoblasts. Tissue engineered stem cells can be useful clinically for autologous implants for treating bone wounds.  相似文献   

10.
It has been shown for developing enamel and zebrafish fin that hydroxyapatite (HA) is preceded by an amorphous precursor, motivating us to examine the mineral development in mammalian bone, particularly femur and tibia of fetal and young mice. Mineral particle thickness and arrangement were characterized by (synchrotron) small-angle X-ray scattering (SAXS) combined with wide-angle X-ray diffraction (WAXD) and X-ray fluorescence (XRF) analysis. Simultaneous measurements of the local calcium content and the HA content via XRF and WAXD, respectively, revealed the total calcium contained in HA crystals. Interestingly, bones of fetal as well as newborn mice contained a certain fraction of calcium which is not part of the HA crystals. Mineral deposition could be first detected in fetal tibia at day 16.5 by environmental scanning electron microscopy (ESEM). SAXS revealed a complete lack of orientation in the mineral particles at this stage, whereas 1 day after birth particles were predominantly aligned parallel to the longitudinal bone axis, with the highest degree of alignment in the midshaft. Moreover, we found that mineral particle length increased with age as well as the thickness, while fetal particles were thicker but much shorter. In summary, this study revealed strong differences in size and orientation of the mineral particles between fetal and postnatal bone, with bulkier, randomly oriented particles at the fetal stage, and highly aligned, much longer particles after birth. Moreover, a part of the calcium seems to be present in other form than HA at all stages of development.  相似文献   

11.
After a lag period, rat aortas incubated in rat serum in vitro accumulated substantial quantities of calcium and phosphate. Examination of the tissue by x-ray diffraction, microradiography, electron diffraction, and electron microscopy indicated that the calcium-phosphate phase which formed was hydroxyapatite and that the crystals were localized almost exclusively in elastin. Selective elimination of various components of the aorta with proteolytic enzymes indicated that the presence of elastin was required for mineralization. Collagen fibers did not appear to be required for the initiation of calcification, nor did they seem to undergo appreciable calcification in the time periods studied. Analysis of the initial lag period suggested that at least two changes occurred in serum prior to the mineralization of this tissue. Inhibitors of the reaction were destroyed, and the level of dialyzable calcium was elevated owing to its release from serum protein.  相似文献   

12.
H G Smith  P M Capalbo 《Biochemistry》1985,24(15):4233-4239
Increasing the concentration of calcium in the external buffer flowing past isolated, intact bovine retinal rod outer segment disks immobilized in a flow system reduced the rate of radioactive calcium efflux from within the disks in the dark. We interpret these results as extradiskal calcium acting at an inhibitory binding site to block the calcium efflux. A Scatchard analysis of the external calcium dependence of the efflux yields an apparent dissociation constant of 50 microM, which further suggests that the inhibition is mediated by a specific membrane binding site. The observed inhibition of calcium efflux may represent a functional role for the high-affinity calcium binding site which has been identified by others in previous physical studies of the disk membrane. This external calcium inhibited permeability may explain some of the discrepancies in the reported calcium transport properties of disks. Variations in the external calcium concentration may alter the calcium content of isolated disks, thereby indirectly affecting other transport functions including the measured light-induced release of calcium. No evidence was found for either Na/Ca or Ca/Ca exchange processes across the disk membrane. Lanthanum was even more effective than calcium in inhibiting calcium efflux in the dark. Neither lanthanum nor calcium inhibited the light-induced efflux of calcium from disks, which implies either that light and extradiskal calcium regulate separate permeability processes in the disk membrane or that light greatly reduces the affinity of the inhibitory site for calcium and lanthanum.  相似文献   

13.
Synopsis The uptake of dyes from dilute solutions by synthetic hydroxyapatite and other sparingly soluble calcium compounds has been determined. About 30 dyes, mostly azo-, dis-azo and anthraquinonoid types were used in 95% ethanol or 0.1 M tris buffer. Many had closely related configurations. Chemical groupings possibly responsible for the adsorption of particular dyes by hydroxyapatite have been deduced from an analysis of the results. The uptake of most dyes from alcoholic solutions was, linearly related to the surface area of hydroxyapatite. Calcium carbonate and secondary calcium phosphate took up less stain than hydroxyapatite of similar surface area. With the simpler anthraquinonoid dyes, the uptake was higher from aqueous than alcoholic solutions, but specificity for hydroxyapatite was much less. The increased uptake of dye by powdered bone or dentine when rendered anorganic was proportional to the increased surface area. It was found that several dyes in common use as stains for bone and calcified tissue were only poorly adsorbed by synthetic hydroxyapatite under the particular conditions of these experiments.The experimental data presented could be used as a basis for the development of histochemical reactions for calcified tissue or inclusions. By suitable choice of dyes, solvent and rinsing solution it ought to be possible to differentiate various forms of calcified material.  相似文献   

14.
A new dendrimer probe was designed for bone imaging. Bidentate iminodiacetate groups were introduced to the probe to obtain strong bind to bones. The assembled dendrimeric probe, with four iminodiacetate moieties and a fluorescent tag, displayed good selectivity to hydroxyapatite, calcium oxalate and calcium phosphate salts. In mice, the probe offered vivid skeletal details after intravenous delivery.  相似文献   

15.
To establish a difference of the relative contents (RCs) of elements among the cervical, thoracic, and lumbar intervertebral disks and its age-related change, the intervertebral disks between the axis and the sacrum, which were resected from the nine cadavers who died at 53 to 99 yr old, were analyzed by inductively coupled atomic plasma emission spectrometry. It was found that both the RCs of calcium and phosphorus were high in the cervical disks, especially the highest in the disk between the 6th and 7th cervical vertebrae, and lower in the order of the cervical, thoracic, and lumbar intervertebral disks. In regard to the RCs of sulfur and magnesium, there were no significant differences among the cervical, thoracic, and lumbar intervertebral disks. In addition, it was found that both the RCs of calcium and phosphorus in the cervical intervertebral disks started to increase in the sixth decade of life, became the highest in the eighth decade of life, and then decreased.  相似文献   

16.
We recently have reported on a novel ankylosis gene that is closely linked to the Enpp1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) gene on chromosome 10. Here, we have discovered novel mutant mice in a Jcl:ICR closed colony with ankylosis in the toes of the forelimbs at about 3 weeks of age. The mutant mice exhibited rigidity in almost all joints, including the vertebral column, which increased with age. These mice also showed hypogrowth with age after 16 weeks due to a loss of visceral fat, which may have been caused by poor nutrition. Histological examination and soft X-ray imaging demonstrated the ectopic ossification of various joints in the mutant mice. In particular, increased calcium deposits were observed in the joints of the toes, the carpal bones and the vertebral column. We sequenced all exons and exon/intron boundaries of Enpp1 in the normal and mutant mice, and identified a G-to-T substitution (c.259+1G>T) in the 5′ splice donor site of intron 2 in the Enpp1 gene of the mutant mice. This substitution led to the skipping of exon 2 (73 bp), which generated a stop codon at position 354 bp (amino acid 62) of the cDNA (p.V63Xfs). Nucleotide pyrophosphohydrolase (NPPH) activity of ENPP1 in the mutant mice was also decreased, suggesting that Enpp1 gene function is disrupted in this novel mutant. The mutant mice reported in this study will be a valuable animal model for future studies of human osteochondral diseases and malnutrition.  相似文献   

17.
To investigate the long-term surface microstructure of a synthetic auditory ossicle (Apaceram) composed of dense hydroxyapatite (HA), thin HA disks were implanted subcutaneously into the interscapular regions of 12 rats. After 6, 14 and 20 months, implanted HA surfaces were observed using stereoscopic microscopy, scanning electron microscopy (SEM) and laser-Raman spectrometry. Visual observation by SEM at 6 months and by stereoscopic microscopy at 14 months indicated a progressive degradation of the HA disk surfaces implanted in the subcutaneous tissue. Visual observation by SEM at 14 and 20 months and by stereoscopic microscopy at 20 months indicated a progressive redeposition on the surfaces of the implants. Raman spectra compared half-peak breadths of v1 signal (PO4(3-), 960 cm(-1)) on the gray and white surface areas of implanted HA disks observed by stereoscopic microscopy. Analysis demonstrates that demineralization at 14 months and remineralization at 20 months occur on the gray areas; demineralization at 6 months and remineralization at 14 months occur on the white areas.  相似文献   

18.
Hyperpolymer formation during the renaturation of DNAs from wheat, calf and E. coli was studied using hydroxyapatite chromatography, electron microscopy and S1 nuclease. Large hyperpolymers could not be eluted from hydroxyapatite with 0.5 M phosphate buffer at 60 degrees C. Large proportions of wheat and E. coli DNAs were incorporated into hyperpolymers when fragments 650 nucleotides long were renatured. A much smaller proportion of calf DNA was incorporated under equivalent conditions. Greater proportions of calf DNA accumulated in hyperpolymers only when longer fragments were incubated. Electron microscopy indicated no obvious differences in the basic structures of hyperpolymers formed by the three DNAs and confirmed the quantitative differences in hyperpolymer formation found by hydroxyapatite chromatography. It is concluded that the proportions and arrangement of the repeated sequences in the chromosomes of higher organisms determine the extent of rapid hyperpolymer formation during DNA renaturation in vitro.  相似文献   

19.
The underlying molecular defect resulting in the abnormal calcification observed in ank/ank mice has been identified. The responsible nonsense mutation affects the protein product of ank, resulting in diminished production of extracellular inorganic pyrophosphate, an important inhibitor of nucleation and of the growth of apatite crystals. The ank gene product is one of several cell membrane proteins, including ectonucleoside triphosphate pyrophosphohydrolase enzymes and alkaline phosphatase, that regulate extracellular inorganic pyrophosphate levels and thereby regulate mineralization.  相似文献   

20.
Ank is a multipass transmembrane protein that regulates the cellular transport of inorganic pyrophosphate. In the progressive ankylosis (ank) mouse, a premature termination mutation at glutamic acid 440 results in a phenotype characterized by inappropriate deposition of basic calcium phosphate crystals in skeletal tissues. Mutations in the amino terminus of ANKH, the human homolog of Ank, result in familial calcium pyrophosphate dihydrate deposition disease. It has been hypothesized that these mutations result in a gain-of-function with respect to the elaboration of extracellular inorganic pyrophosphate. To explore this issue in a mineralization-competent system, we stably transduced ATDC5 cells with wild-type Ank as well as with familial chondrocalcinosis-causing Ank mutations. We evaluated the elaboration of inorganic pyrophosphate, the activity of pyrophosphate-modulating enzymes, and the mineralization in the transduced cells. Expression of transduced protein was confirmed by quantitative real-time PCR and by ELISA. Levels of inorganic pyrophosphate were measured, as were the activities of nucleotide pyrophosphatase phosphodiesterase and alkaline phosphatase. We also evaluated the expression of markers of chondrocyte maturation and the nature of the mineralization phase elaborated by transduced cells. The cell line expressing the proline to leucine mutation at position 5 (P5L) consistently displayed higher levels of extracellular inorganic pyrophosphate and higher phosphodiesterase activity than the other transduced lines. During hypertrophy, however, extracellular inorganic pyrophosphate levels were modulated by alkaline phosphatase activity in this cell system, resulting in the deposition of basic calcium phosphate crystals only in all transduced cell lines. Cells overexpressing wild-type Ank displayed a higher level of expression of type X collagen than cells transduced with mutant Ank. Other markers of hypertrophy and terminal differentiation, such as alkaline phosphatase, osteopontin, and runx2, were not significantly different in cells expressing wild-type or mutant Ank in comparison with cells transduced with an empty vector or with untransduced cells. These results suggest that the P5L Ank mutant is capable of demonstrating a gain-of-function with respect to extracellular inorganic pyrophosphate elaboration, but this effect is modified by high levels of expression of alkaline phosphatase in ATDC5 cells during hypertrophy and terminal differentiation, resulting in the deposition of basic calcium phosphate crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号