首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The CH2Cl2 and MeOH extracts from leaves of Piper caldense were subjected to chromatographic separation procedures to afford the new prenylated benzoic acid, caldensinic acid (3-[(2′E,6′E,10′E)-11′-carboxy-3′,7′,15′-trimethylhexadeca-2′,6′,10′,14′-tetraenyl]-4,5-dihydroxybenzoic acid) whose structure was determined by spectral analysis, mainly NMR (1H, 13C, HSQC, HMBC) and ESI-MS. The natural compound and derivatives displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum by direct bioautography.  相似文献   

2.
Tomato shoots and avocado mesocarp supplied with (±)-[2-14C]-5-(1,2-epoxy-2,6,6-trimethylcyclohexyl)-3-methylpenta-cis-2-trans-4-dienoic acid metabolize it into (+)-abscisic acid and a more polar material that was isolated and identified as (?)-epi-1′(R),2′(R)-4′(S)-2-cis-xanthoxin acid. The (+)-1′(S),2′(S)-4′(S)-2-cis-xanthoxin acid recently synthesized from natural violaxanthin, has the 1′,2′-epoxy group on the opposite side of the ring to that of the 4′(S)-hydroxyl group and the compound is rapidly converted into (+)-abscisic acid. The 1′,2′-epoxy group of (?)-1′,2′-epi-2-cis-xanthoxin acid is on the same side of the ring as the 4′(S) hydroxyl group: the compound is not metabolized into abscisic acid. The configuration of the 1′,2′-epoxy group probably controls whether or not the 4′(S) hydroxyl group can be oxidized. (+)-2-cis-Xanthoxin acid is probably not a naturally occurring intermediate because a ‘cold trap’, added to avocado fruit forming [14C]-labelled abscisic acid from [2-14C]mevalonate, failed to retain [14C] label.  相似文献   

3.
The fat of the seeds from the West African tree Pycnanthus kombo contains ca 20% of a hitherto undescribed compound. This compound was identified as 16(2′,5′-dihydroxy-3′-methylphenyl)-2,6,10,14-tetramethyl-2,6,10,14-hexadecatetraenoic acid, for which the name kombic acid is proposed.  相似文献   

4.
Treatment of 6,6′-di-O-trityl-trehalose (1) [2] with benzyl chloride in dioxane followed by acid hydrolysis and chromatography gave the chromatographically pure 2,3,4,2′,3′,4′-hexa-O-benzyl trehalose (2). Compound 2 was converted into the corresponding 6,6′-di-O-methane-sulphonyl derivative 3 in quantitative yield. Treatment of the latter compound with the potassium salts of 4-[p-(hexadecyloxy)-phenyl]butyric acid, corynomycolic acid and mycolic acid from Mycobacterium bovis afforded the corresponding benzylated-6,6′-di-O-acyl esters 4, 5 and 6 respectively. Catalytic hydrogenolysis of 4, 5, and 6 yielded 6,6′-di-O-4-[p-(hexadecyloxy)-phenyl] butyryl-trehalose 7; 6,6′-di-O-corynomycolyl-trehalose 8; and 6,6′-di-O-bovi-mycolyl-trehalose 9 respectively.  相似文献   

5.
(±)-(2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid was metabolized by Cercospora cruenta, which has the ability to produce (+)-abscisic acid (ABA), to give (±)-(2Z,4E)-xanthoxin acid, (±)-(2Z,4E)-5′-hydroxy-1′,2′-epoxy-1′,2′-dihydro-β-ionylideneacetic acid, (±)-1′,2′-epoxy-1′,2′-dihydro-β-ionone and trace amounts of ABA.  相似文献   

6.
Two new isoflavones, 7-hydroxy-6,3′,4′,5′-tetramethoxy-isoflavone (1) and 6-hydroxy-7,3′,4′,5′-tetramethoxy-isoflavone (2), together with seven known isoflavones were isolated from the roots and stems of Nicotiana tabacum. Their structures were determined by means of HRESIMS, extensive 1D and 2D NMR spectroscopic studies and chemical evidences. The anti-tobacco mosaic virus (anti-TMV) activities of the isoflavones were also evaluated. The results reveal that compound 9 shows high anti-TMV activity, compound 2 shows moderate anti-TMV activity, and compounds 1, 38 show weak anti-TMV activities.  相似文献   

7.
(±)-O-méthylsativan, 7,2′,4′-trimethoxyisoflavan was prepared by hydroboration followed by chromic acid oxidation of 4-hydroxy-3(2′,4′-dimethoxy,phenyl)7-methoxycoumarin. At increasing concentrations this compound modifies the metabolism of Phytophthora parasitica and then stops its growth. Under the same conditions, it strongly inhibits the activity of pectic transeliminases and, to a less extent, the activities of pectic hydrolases and β-glucosidase.  相似文献   

8.
Treatment of methyl 3-O-acetyl-4,6-O-benzylidene-α-D-glucopyranoside 2-chlorosulphate (2), 3,4,6,3′,4′,6′-hexa-O-acetylsucrose 2,1′-bis(chlorosulphate), 3,4,6,3′,4′,6′-hexa-O-acetyl-1′-O-benzoylsucrose 2-chlorosulphate, and 3,4,3′,4′-tetra-O-acetyl-6,6′-dichloro-6,6′-dideoxysucrose 2,1′-bis(chlorosulphate) with lithium chloride in hexamethylphosphoric triamide gave the corresponding chlorodeoxy-manno derivatives. Treatment of the 2-chlorosulphate 2 with such nucleophilic reagents as lithium bromide, sodium azide, sodium chloride, and sodium benzoate in hexamethylphosphoric triamide gave the 2-hydroxy compound as a major product. Selective chlorination at C-1′ was achieved when 3,4,6,3′,4′,6′-hexa-O-acetylsucrose was treated with sulphuryl chloride in a mixture of pyridine and chloroform.  相似文献   

9.
From the leaves of the fern Pityrogramma ebenea a new compound 2′,6′-dihydroxy-4,3′-dimethoxy-4′,5′-methylenedioxydihydrochalcone was characterized. (2S)-5,7-Dihydroxy-4′-methoxy-6,8-dimethylflavanone was identified in another fern, Blechnum regnellianum  相似文献   

10.
A series of new 3-substituted-7-(2-chloro-6-ethoxypyridin-4-yl)-9-(2,4-dichlorophenyl)-2-methylpyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-one derivatives were synthesized as antimicrobial agents using 7-(2-chloro-6-ethoxypyridin-4-yl)-9-(2,4-dichlorophenyl)-2-methyl-4H-pyrido[3′,2′:4,5]thieno[3,2-d]-[1,3]oxazin-4-one as a starting compound. Its condensation with substituted aniline derivatives or phenyl hydrazine gave the corresponding N-substituted derivatives. Treatment of the starting compound with hydrazine hydrate afforded the corresponding N-amino derivative, which was reacted with substituted phenylisocyanate and phenylisothiocyanate derivatives to give the corresponding semicarbazides and thiosemicarbazide derivatives. All the newly synthesized compounds were evaluated for their antimicrobial activities in comparison to streptomycin and fusidic acid as positive controls. The structure assignments of the new compounds are based on chemical and spectroscopic evidence.  相似文献   

11.
The structures of three previously unidentified carotenoids from Eutreptiella gymnastica are reported. These include siphonein with defined n-2-trans-2-dodecenoic esterifying acid and assigned 3R(?), 3′R,6′R chirality, (3R)-3′,4′-anhydrodiatoxanthin and eutreptiellanone (3,6-epoxy-3′,4′,7′,8′-tetradehydro-5,6-dihydro-β,β-caroten-4-one) with probable 3S,5R,6S chirality.  相似文献   

12.
Metabolism of 2,4,4′-trichlorobiphenyl by Acinetobacter sp. strain P6 has been studied. When the incubation was carried out without shaking at 15°C, two isomeric monohydroxy compounds, a dihydrodiol compound, a dihydroxy compound, a meta-cleaved yellow compound and a dichlorobenzoic acid were detected by combined gas liquid chromatograph-mass spectrometry. As an additional metabolite, dichlorodihydroxy biphenyl, a dechlorinationhydroxylation product, was also detected. When the incubation mixture was shaken at 30°C, a meta-cleaved yellow compound was readily produced and predominantly accumulated in the reaction mixture upon further incubation. The major pathway of 2,4,4′-trichlorobiphenyl by Acinetobacter sp. P6 was considered to proceed oxidatively via 2.′3′-dihydro-2′,3′-diol compound, concomitant dehydrogenated 2′,3′-dihydroxy compound and then the 1′,2′-meta-cleaved yellow compound, i.e., 3-chloro-2-hydroxy-6-oxo-6(2,4-dichlorophenyl)hexa-2,4-dienoic acid.  相似文献   

13.
Chiral (+)- and (?)-enantiomers of (2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid have been synthesized from the chiral epoxy alcohols (+)- and (?)-1′,2′-dihydro-1′,2′-epoxy-β-ionone, which were prepared by Katsuki-Sharpless' asymmetric epoxidation of β-cyclogeraniol. The (+)-enantiomer showed strong inhibitory activity in a rice seedling and lettuce germination assay, whereas the (?)-enantiomer was 103-times less active.  相似文献   

14.
15.
Two new prenylated isoflavones were isolated from the root bark of Piscidia erythrina. The first compound was identified as 2′-deoxypiscerythrone. The second compound, the most abundant component of the extract, was identified as 3′-6′-di-Δ2-isopentenyl-5,7,2′,4′-tetrahydroxy-5′-methoxyisoflavone.  相似文献   

16.
The catalytic cycloalumination of 2′-methylidene-2′,3′-ethano-(5α)-cholestane with Et3Al catalyzed by Cp2ZrCl2 was performed for the first time to give spiro[2′,3′-ethano-(5α)-cholestane-2′,3″-aluminacyclopentane] in a ~75% yield and with high stereoselectivity (>98%). The obtained cyclic organoaluminum compound was transformed in situ into heterocyclic spiran derivatives of 2′,3′-ethano-(5α)-cholestane.  相似文献   

17.
A new dialdose dianhydride derivative was obtained from an acid hydrolyzate of the water-soluble polysaccharide of wobaku wood by successive treatment with methanolic hydrogen chloride and acetic anhydride-pyridine. This compound was determined to be the 1,2′:1′,2-dianhydride of 3,4-di-O-acetyl-β-l-rhamnopyranose and methyl 3,4-di-O-acetyl-α-d-galactopyranuronate.  相似文献   

18.
Feeding experiments have demonstrated the specific incorporation of radioactivity from dl-phenylalanine-[1-14C], l-phenylalanine-[U-14C], sodium acetate-[2-14C] and l-methionine-[methyl-14C] into the 3-benzylchroman-4-one eucomin in Eucomis bicolor. The labelling patterns indicate that eucomin is biosynthesized by the addition of a carbon atom derived from methionine onto a C15 chalcone-type skeleton. Radioactivity from 2′,4′,4-trihydroxy-6′-methoxychalcone-[methyl-14C] and 2′,4′-dihydroxy-4,6′-dimethoxychalcone-[6′-methyl-14C] was incorporated into eucomin, the latter compound being the better precursor, demonstrating the feasibility that 2′-methoxychalcones are biosynthetic precursors of the “homoisoflavonoids”. Possible biosynthetic relationships in this class of compounds are discussed.  相似文献   

19.
Three benzophenones, 2,6,3′,5′-tetrahydroxybenzophenone (1), 3,4,5,3′,5′-pentahydroxybenzophenone (3) and 3,5,3′,5′-tetrahydroxy-4-methoxybenzophenone (4), as well as a xanthone, 1,3,6-trihydroxy-5-methoxy-7-(3′-methyl-2′-oxo-but-3′-enyl)xanthone (9), were isolated from the twigs of Garcinia cantleyana var. cantleyana. Eight known compounds, 3,4,5,3′-tetrahydroxy benzophenone (2), 1,3,5-trihydroxyxanthone (5), 1,3,8-trihydroxyxanthone (6), 2,4,7-trihydroxyxanthone (7), 1,3,5,7-tetrahydroxyxanthone (8), quercetin, glutin-5-en-3β-ol and friedelin were also isolated. The structures of the compounds were elucidated by spectroscopic methods. The compounds were investigated for their ability to inhibit low-density lipoprotein (LDL) oxidation and platelet aggregation in human whole blood in vitro. Most of the compounds showed strong antioxidant activity with compound 8 showing the highest inhibition with an IC50 value of 0.5 μM, comparable to that of probucol. Among the compounds tested, only compound 4 exhibited strong inhibitory activity against platelet aggregation induced by arachidonic acid (AA), adenosine diphosphate (ADP) and collagen. Compounds 3, 5 and 8 showed selective inhibitory activity on platelet aggregation induced by ADP.  相似文献   

20.
The chemical investigations of Dicorynia guianensis heartwood led to the isolation of four new indole alkaloids for the first time in this plant. Compound (1) identified as spiroindolone 2′,3′,4′,9′-tetrahydrospiro [indoline-3,1′pyrido[3,4-b]-indol]-2-one, and compound (3) described as nitrone 1-methyl-4,9-dihydro-3H-pyrido [3,4-b] indole 2-oxide and were isolated for the first time as natural products. ABTS antioxidant activity guided their isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号