首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new pregnane ester glycosides designated as pallidine and pallidinine have been isolated from the dried twigs of Pergularia pallida. Chemical and spectroscopic evidences are consistent with the structure 12,20-di-O-benzoyl sarcostin-3-O-β-d-oleandroside and 12,20-di-O-benzoyl-sarcostin-3-O-β-d-cymaropyranosyl(1 → 4)-β-d-oleandropyranoside for pallidine and pallidinine respectively.  相似文献   

2.
A new pregnane ester genin, plocigenin, and a new pregnane ester diglycoside, plocin, have been isolated from the dried twigs of Periploca calophylla. The chemical and spectroscopic properties are consistent with the structures 12,20-di-O-benzoyl drevogenin-D and 12,20-di-O-benzoyl drevogenin-D-3-O-β-D-oleandropyranosyl (1 → 4)-O-β-oleandropyranoside, respectively.  相似文献   

3.
A new pregnane ester diglycoside of ornogenin named as plocinine was isolated from the dried twigs of Periploca calophylla. On the basis of chemical and spectroscopic evidences its structure was established as 12,20-di-O-cinnamoyl sarcostin-3-O-α-L-oleandropyranosyl (1 → 4)-O-α-L-oleandropyranoside.  相似文献   

4.
In a previous study, the methanolic extract as well as the chloroform fraction of the aerial parts of Caralluma quadrangula (Forssk.) N.E.Br. indigenous to Saudi Arabia showed significant in vitro cytotoxic activity against breast cancer (MCF7) cell line. In a biologically-guided fractionation approach, four acylated pregnane glycosides were isolated from the chloroform fraction of C. quadrangula. The structures of the isolated compounds were elucidated by the analysis of their MS and NMR data. The compounds were identified as 12,20-di-O-benzoylboucerin 3-O-β-d-digitoxopyranosyl-(1  4)-β-d-canaropyranosyl-(1  4)-β-d-cymaropyranoside (1), 12,20-di-O-benzoylboucerin 3-O-β-d-cymaropyranosyl-(1  4)-β-d-canaropyranosyl-(1  4)-β-d-cymaropyranoside (2), 12,20-di-O-benzoylboucerin 3-O-β-d-glucopyranosyl-(1  4)-β-d-digitoxopyranosyl-(1  4)-β-d-canaropyranosyl-(1  4)-β-d-cymaropyranoside (3) and 12,20-di-O-benzoyl-3β,5α,12β,14β,20-pentahydroxy-(20R)-pregn-6-ene 3-O-β-d-glucopyranosyl-(1  4)-β-d-digitoxopyranosyl-(1  4)-β-d-canaropyranosyl-(1  4)-β-d-cymaropyranoside (4). The isolated compounds were tested for their cytotoxic activity against breast cancer (MCF7) cell line.  相似文献   

5.
Synthetic routes are discussed to the branched d-mannopentaoside methyl 6-O-(2,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-3-O-α-d-mannopyranosyl-α-d-mannopyranoside and d-mannohexaoside methyl 6-O-(2,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-3-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)- α-d-mannopyranoside, employing the properly benzylated d-mannobioside methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside and d-mannotrioside methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-d-mannopyranosyl)-3-O-(3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-α-d- mannopyranoside as key intermediates.  相似文献   

6.
Synthetic routes are described to the d-mannopentaoside methyl 3-O-(3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-6-O-α-d-mannopyranosyl-α-d-mannopyranoside, and the d-mannohexaoside methyl 3-O-(3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-6-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-α- d-mannopyranoside, formed in a regio- and stereo-controlled way by employing the properly protected d-mannobioside methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside and d-mannotrioside methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl-α-d-mannopyranosyl)-6-O-(3,4,6-tri-O-benzyl-α-d- mannopyranosyl)-α-d-mannopyranoside as key intermediates.  相似文献   

7.
2-O-Benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-, 4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-, and 2-O-benzoyl-3,4,6-tri-O-benzyl-α-d-galactopyranosyl chloride were converted into the corresponding 2,2,2-trifluoroethanesulfonates, and these were treated with allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give allyl 2-O-benzoyl-4-O-[2-O-benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-β-d-galactopyranosyl]-3,6-di-O-benzyl- α-d-galactopyranoside (26; 41% yield), allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl- α-d-galactopyranoside (27; 62% yield), and allyl 2-O-benzoyl-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-d-galactopyranosyl)-3,6-di-O-benzyl-α-d-galactopyranoside (28; 65% yield). All disaccharides were free from their α anomers. Disaccharides 26 and 27 were found to be base-sensitive, and were de-esterified by KCN in aqueous ethanol, and debenzylated with H2-Pd. Attempts to produce (1→4)-β-d-galactopyranosides from the coupling of a number of fully esterified d-galactopyranosyl sulfonates to allyl 2,3,6-tri-O-benzoyl-α-d-galactopyranoside were unsuccessful.  相似文献   

8.
Efficient syntheses are described of the branched d-mannopentaosides methyl 2,6-di-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)α-d-mannopyranoside and methyl 2,4-di-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-α-d-mannopyranoside, starting from the glycosyl acceptors methyl 3,4-di-O-benzyl-α-d-mannopyranoside and methyl 3,6-di-O-benzyl-α-d-mannopyranoside, and employing the protected d-mannotriosides methyl 3,4-di-O-benzyl-2,6-di-O-(3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside, and methyl 3,6-di-O-benzyl-2,4-di-O-(3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside as key intermediates.  相似文献   

9.
3,6-Anhydro-α-D-galactopyranose 1,2-(methyl orthoacetate) and its 4-acetate were synthesized from 2,3,4-tri-O-acetyl-6-O-tosyl-α-D-galactopyranosyl bromide. Condensation of the above-mentioned, acetylated ortho ester with 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose gave 6-O-(2,4-di-O-acetyl-3,6-anhydro-β-D-galactopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose. The same disaccharide derivative was synthesised from 6-O-β-D-galactopyranosyl-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose by mono-O-tosylation followed by treatment with alkali and acetylation.  相似文献   

10.
The major flavonoid of Marchantia berteroana is hypolaetin 8-O-β-d-glucuronide. This is accompanied by apigenin and luteolin, isoscutellarein (8-hydroxyapigenin) 8-O-β-d-glucuronide, the 7-O-β-d-glucuronide and -galacturonide of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide and -galacturonide, luteolin 7,3′-di-O-β-d-glucuronide and -galacturonide, luteolin 3′,4′-di-O-β-d-glucuronide and -galacturonide, luteolin 7,4′-di-O-β-d-glucuronide, and hypolaetin 8,4′-di-O-β-d-glucuronide. The isoscutellarein and hypolaetin glucuronides, and the galacturonide flavones are all new natural products.  相似文献   

11.
Two carrageenans from Iridaea undulosa, isolated by precipitation of the crude polysaccharide at O.70–1.05 M and 1.55–1.65 M KCl concentrations, were studied by methylation analysis. Acid hydrolysis of the methylated derivative of the less soluble carrageenan (molar ratio galactose: 3,6-anhydrogalactose: sulphate 1.00: 0.50: 1.20) yielded major amounts of 2,6-di-O-methylgalactose (51.3 mol %), 4,6-di-O-methylgalactose (25.6%) and 4-O-methylgalactose (51.3mol%), 4,6-di-O-methylgalactose (25.6%) and 4-O-methylgalactose (13.4%). Minor quantities of 3-O-methylgalactose (4.6%) and 6-O-methylgalactose (3.2%) were found together with traces of 2,3,6- and/or 2,4,6-tri-O-methylgalactose, 2-O-methylgalactose and galactose. Oxidative acid hydrolysis produced 3,6-anhydro-2-O-methylgalactonic acid and 3,6-anhydrogalactonic acid in a molar ratio 3.5-4.0:1.0. The methylated derivative of the more soluble carrageenan (molar ratio galactose:3,6-anhydrogalactose:sulphate 1.00:0.04:1.43) gave on acid hydrolysis, 2,3,4,6-tetra-O-methylgalactose (4.6%), 2,3,6-tri-O-methylgalactose (4.2%), 2,4,6-tri-O-methylgalactose (10.7%), 4,6-di-O-methylgalactose (24.1%), 3,6-di-0-methylgalactose (8.0%), 2,3-di-O- methylgalactose (3.4%), 2,4-di-O-methylgalactose (4.6%), 2,6-di-O-methylgalactose (4.2%), 3-O-methylgalactose (19.5%),4-O-methylgalactose (9.6%),6-O-methylgalactose(3.1%),galactose (3.4%)and traces of 2-O-methylgalactose.  相似文献   

12.
The following ethers, of potential value for the synthesis of α-D-galactopyranosides, were prepared: 2-O-benzyl-D-galactose, 2,6-di-O-benzyl-D-galactose, and 2,3-di-O-benzyl-D-galactose. Isopropylidenation of methyl α-D-galactopyranoside in the presence of phosphorus pentaoxide gave its 3,4-, and 4,6-O-isopropylidene derivatives. Treatment of the 3,4-acetal with trityl chloride in pyridine produced the 6-trityl ether, which was benzylated with benzyl chloride and sodium hydride in N,N-dimethylformamide to yield the 2-benzyl ether. Acid hydrolysis of this product gave 2-O-benzyl-D-galactose. Benzylation of methyl 3,4-O-isopropylidene-α-D-galactopyranoside, followed by hydrolysis, gave 2,6-di-O-benzyl-D-galactose. Similarly, 2,3-di-O-benzyl-D-galactose was obtained by acid hydrolysis of methyl 2,3-di-O-benzyl-4,6-O-isopropylidene-α-D-galactopyranoside and of methyl 2,3-di-O-benzyl-4,6-O-benzylidene-β-D-galactopyranoside.  相似文献   

13.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

14.
Stereo- and regio-selective synthesis of 3-O-(2-acetamido-2-deoxy-3-O-β-d- galactopyranosyl-β-d-galactopyranosyl)-1,2-di-O-tetradecyl-sn-glycerol by use of 1,2-di-O-tetradecyl-3-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-sn-glycerol as a key intermediate is described.  相似文献   

15.
Nucleophilic Michael-type additions to aldohexofuranoid 3-C-methylene derivatives, namely, 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-nitromethylene-α-d-ribo-hexofuranose and 3-C-[cyano(ethoxycarbonyl)methylene]-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranose employing phase-transfer catalysis, afforded novel gem-di-C-substituted sugars. The conversion of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl-α-d-allo-hexofuranose into a 3-C-hydroxymethyl-3-C-methyl derivative with titanium trichloride, and that of the nitromethyl groups of 3-deoxy-1,2:5,6-di-O-isopropylidene-3,3-di-C-nitromethyl-α-d-ribo-hexofuranose, and 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl- and -3-C-nitromethyl-α-d-allo-hexofuranose into cyano groups with phosphorus trichloride in pyridine is also described.  相似文献   

16.
2-Methyl-(2-acetamido-3,4,6-tri-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,2-methyl-(2-acetamido-6-O-acetyl-3,4-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,and 2-methyl-(2-acetamido-4-O-acetyl-3,6-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline were synthesized from the allyl 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranosides, and from the 3,4-di-O-benzyl or 3,6-di-O-benzyl analogs, respectively, both the α and β anomer being used in each case. The preparation of allyl 2-acetamido-3,4,6-tri-O-benzyl- and 3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside is also described. Treatment of the tri-O-benzyl oxazoline with dibenzyl phosphate gave a pentabenzylglycosyl phosphate, from which all the benzyl groups were removed by catalytic hydrogenation, giving 2-acetamido-2-deoxy-α-D-glucopyranosyl phosphate. The corresponding β anomer was not detectable. Treatment of the 3,4-, or 3,6-, di-O-benzyl oxazoline with allyl 2-acetamido-3,4-di-O-benzyl-α-D-glucopyranoside readily gave disaccharide products from which the protecting groups were removed, to give the (1→6)-linked isomer of di-N-acetylchitobiose. Under both acidic and basic conditions, this isomer was less stable than the (1→4)-linked compound.Attempts to employ the 3,6-di-O-benzyl oxazoline for the formation of (1→4)-linked disaccharides, by treatment with either anomer of allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside, were not very successful, presumably owing to hindrance by the bulky benzyl groups.  相似文献   

17.
Silver trifluoromethanesulfonate-promoted condensation of 3,4,6-tri-O-acetyl-2-deoxy-phthalimido-β-d-glucopyranosyl bromide with benzyl 3,6-di-O-benzyl-α-d-mannopyranoside and benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave the protected 2,4- and 2,6-linked trisaccharides in yields of 54 and 32%, respectively. After exchanging the 2-deoxy-2-phthalimido groups for 2-acetamido-2-deoxy groups and de-blocking, the trisaccharides 2,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose and 2,6-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose were obtained. Similar condensation of 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d-glucopyranosyl bromide with benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave a pentasaccharide derivative in 52% yield. After transformations analogous to those applied to the trisaccharides, 2,6-di-O-[β-d-galactopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)]-d-mannose was obtained.  相似文献   

18.
O-(2,4-Di-O-chloroacetyl-α-l-rhamnopyranosyl)-(1 → 2)-O-(3,4,6-tri-O-benzoyl-α-d-galactopyranosyl)-(1 → 3)-O-(2-acetamido-4,6-di-O-acetyl-2-deoxy-α-d-glycopyranosyl)-(1 → 3)-2,4-di-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate (1) was synthesized in a stepwise manner, using the following monosaccharide units: 2-(trimethylsilyl)ethyl 2,4-di-O-benzoyl-α-l-rhamnopyranoside, 2-azido-4,6-O-benzylidene-3-O-chloroacetyl-2-deoxy-β-d-glycopyranosyl chloride, methyl 3,4,6-tri-O-benzoyl-2-O-(4-methoxybenzyl)-1-thio-β-d-galactopyranoside, and 2,4-di-O-benzoyl-3-O-chloroacetyl-α-l-rhamnopyranosyl chloride. Compound 1 corresponds to a complete tetrasaccharide repeating unit of the O-specific polysaccharide of the lipopolysaccharide of Shigella dysenteriae type 1.  相似文献   

19.
from Leucanthemopsis pallida subsp.flaveo three new pyrogallol derivatives were isolated: 4-hydroxy-5-propionyl-1,3-di-O-methylpyrogallol, 4-hydroxy-5-propionyl-1,3-di-O-methyl-2-O-isopentenylpyrogallol and 5-(1′-isovalerianoyloxy)-ethyl-1,3-di-O-methyl-2-O-isopentenylpyrogallol.  相似文献   

20.
A chemical investigation of the bark of Quercus stenophylla has led to the isolation and characterization of all of the possible structural isomers of quinic acid gallates; 3-O-, 4-O-, 5-O-, 3,4-di-O-, 3,5-di-O-, 4,5-di-O- and 3,4,5-tri-O-galloylquinic acids. Evidence for the structures of these compounds was obtained from analysis of the 1H and 13C NMR spectra, and hydrolytic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号