首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Sjögren-Larsson syndrome (SLS) is a rare, autosomal recessive disorder that is characterized by congenital ichthyosis, mental retardation, and spastic diplegia or tetraplegia. Three United States families, three Egyptian families, and one Israeli Arab family were investigated for linkage of the SLS gene to a region of chromosome 17. Pairwise and multipoint linkage analysis with nine markers mapped the SLS gene to the same region of the genome as that reported in Swedish SLS pedigrees. Examination of recombinants by haplotype analysis showed that the gene lies in the region containing the markers D17S953, D17S805, D17S689, and D17S842. D17S805 is pericentromeric on 17p. Patients in two consanguineous Egyptian families were homozygous at the nine marker loci tested, and another patient from a third family was homozygous for eight of the nine, suggesting that within each of these families the region of chromosome 17 carrying the SLS gene is identical by descent. Linkage of the SLS gene to chromosome 17p in families of Arabic, mixed European, Native American, and Swedish descent provides evidence for a single SLS locus and should prove useful for diagnosis and carrier detection in worldwide cases.  相似文献   

2.
We have previously reported linkage of systemic lupus erythematosus to chromosome 2q37 in multicase families from Iceland and Sweden. This locus (SLEB2) was identified by linkage to the markers D2S125 and D2S140. In the present study we have analyzed additional microsatellite markers and SNPs covering a region of 30 cM around D2S125 in an extended set of Nordic families (Icelandic, Swedish, and Norwegian). Two-point linkage analysis in these families gave a maximum lod score at the position of markers D2S2585 and D2S2985 (Z = 4.51, PIC = 0.65), by applying a "model-free" pseudo-marker linkage analysis. Based on multipoint linkage analysis in the Nordic families, the most likely location of the SLEB2 locus is estimated to be in the interval between D2S125 and the position of markers D2S2585 and D2S2985, with a peak multipoint lod score of Z = 6.03, assuming a dominant pseudo-marker model. Linkage disequilibrium (LD) analysis was performed using the data from the multicase families and 89 single-case families of Swedish origin, using the same set of markers. The LD analysis showed evidence for association in the single-case and multicase families with locus GAAT3C11 (P < 0.0003), and weak evidence for association was obtained for several markers located telomeric to D2S125 in the multicase families. Thirteen Mexican families were analyzed separately and found not to have linkage to this region. Our results support the presence of the SLEB2 locus at 2q37.  相似文献   

3.
Congenital chloride diarrhea is a recessively inherited intestinal disorder affecting electrolyte transportation. The clinical presentation is a life-threatening watery diarrhea with a high chloride content. Recently, the congenital chloride diarrhea gene (CLD) was assigned to chromosome 7 by linkage in eight Finnish families. In the present study, refined mapping of CLD was performed by studying linkage and linkage disequilibrium in 24 Finnish and 4 Swedish families. Recombination mapping assigned CLD to an approximately 10-cM region flanked by D7S515 and D7S799. Linkage disequilibrium was detected over this large genetic region, with the strongest allelic association at D7S496. Application of the Luria and Delbrück-derived analysis allowed for a further narrowing of the CLD region to approximately 0.37 cM from the marker D7S496. Haplotype analysis placed CLD unequivocally between D7S501 and D7S692, very close to D7S496 and most likely on the distal side of D7S496. This combined analytical approach allowed highly accurate mapping of CLD, each component adding complementary and consistent mapping information.  相似文献   

4.
A new neonatal syndrome characterized by intrauterine growth retardation, lactic acidosis, aminoaciduria, liver hemosiderosis, and early death was recently described. The pathogenesis of this disease is unknown. The mode of inheritance is autosomal recessive, and so far only 17 cases have been reported in 12 Finnish families. Here we report the assignment of the locus for this new disease to a restricted region on chromosome 2q33-37. We mapped the disease locus in a family material insufficient for traditional linkage analysis by using linkage disequilibrium, a possibility available in genetic isolates such as Finland. The primary screening of the genome was performed with samples from nine affected individuals in five families. In the next step, conventional linkage analysis was performed in eight families, with a total of 12 affected infants, and finally the locus assignment was proved by demonstrating linkage disequilibrium to the regional markers in 20 disease chromosomes. Linkage analysis restricted the disease locus to a 3-cM region between markers D2S164 and D2S2359, and linkage disequilibrium with the ancestral haplotype restricted the disease locus further to the immediate vicinity of marker D2S2250.  相似文献   

5.
The locus (RP1) for one form of autosomal dominant retinitis pigmentosa (adRP) was mapped on chromosome 8q11-q22 between D8S589 and D8S285, which are about 8 cM apart, by linkage analysis in an extended family ascertained in the USA. We have studied a multigeneration Australian family with adRP and found close linkage without recombination between the disease locus and D8S591, D8S566, and D8S166 (Zmax = 1.137– 4.650 at θ = 0.00), all mapped in the region known to harbor RP1. Assuming that the mutation of the same gene is responsible for the disease in both families, the analysis of multiply informative meioses in the American and Australian families places the adRP locus between D8S601 and D8S285, which reduces the critical region to about 4 cM, corresponding to approximately 4 Mb, which is completely covered by a yeast artificial chromosome contig assembled recently. Received: 23 April 1996 / Accepted: 3 July 1996  相似文献   

6.
Diamond-Blackfan anemia (DBA) is a rare pure red-cell hypoplasia of unknown etiology and pathogenesis. A major DBA locus has previously been localized to chromosome 19q13.2. Samples from additional families have been collected to identify key recombinations, microdeletions, and the possibility of heterogeneity for the disorder. In total, 29 multiplex DBA families and 50 families that comprise sporadic DBA cases have been analyzed with polymorphic 19q13 markers, including a newly identified short-tandem repeat in the critical gene region. The results from DNA analysis of 29 multiplex families revealed that 26 of these were consistent with a DBA gene on 19q localized to within a 4.1-cM interval restricted by loci D19S200 and D19S178; however, in three multiplex families, the DBA candidate region on 19q13 was excluded from the segregation of marker alleles. Our results suggest genetic heterogeneity for DBA, and we show that a gene region on chromosome 19q segregates with the disease in the majority of familial cases. Among the 50 families comprising sporadic DBA cases, we identified two novel and overlapping microdeletions on chromosome 19q13. In combination, the three known microdeletions associated with DBA restrict the critical gene region to approximately 1 Mb. The results indicate that a proportion of sporadic DBA cases are caused by deletions in the 19q13 region.  相似文献   

7.
Patients with Peutz-Jeghers syndrome (PJS), an autosomal dominant disease characterized by hamartomatous polyposis of the gastrointestinal tract, are thought to be predisposed to malignancies of the digestive tract, genital tract, and other organs. Using microsatellite markers on chromosome 19p, we have closely defined the region containing the gene responsible for this disorder through linkage analysis in seven affected families. The lack of obligate recombinants at two of these loci, D19S883 and D19S878, with maximum LOD scores of 2.88 and 3.75, confirmed the localization of the PJS locus to chromosome 19. Furthermore, haplotype analysis placed the PJS locus within a 6-cM telomeric region of chromosome 19p, between D19S886 and D19S565. Received: 18 August 1997 / Accepted: 5 November 1997  相似文献   

8.
Apolipoprotein E (APOE) is the only confirmed susceptibility gene for late-onset Alzheimer disease (AD). In a recent genomic screen of 54 families with late-onset AD, we detected significant evidence for a second late-onset AD locus located on chromosome 12 between D12S373 and D12S390. Linkage to this region was strongest in 27 large families with at least one affected individual without an APOE-4 allele, suggesting that APOE and the chromosome 12 locus might have independent effects. We have since genotyped several additional markers across the region, to refine the linkage results. In analyzing these additional data, we have addressed the issue of heterogeneity in the data set by weighting results by clinical and neuropathologic features, sibship size, and APOE genotype. When considering all possible affected sib pairs (ASPs) per nuclear family, we obtained a peak maximum LOD score between D12S1057 and D12S1042. The magnitude and location of the maximum LOD score changed when different weighting schemes were used to control for the number of ASPs contributed by each nuclear family. Using the affected-relative-pair method implemented in GENEHUNTER-PLUS, we obtained a maximum LOD score between D12S398 and D12S1632, 25 cM from the original maximum LOD score. These results indicate that family size influences the location estimate for the chromosome 12 AD gene. The results of conditional linkage analysis by use of GENEHUNTER-PLUS indicated that evidence for linkage to chromosome 12 was stronger in families with affected individuals lacking an APOE-4 allele; much of this evidence came from families with affected individuals with neuropathologic diagnosis of dementia with Lewy bodies (DLB). Taken together, these results indicate that the chromosome 12 locus acts independently of APOE to increase the risk of late-onset familial AD and that it may be associated with the DLB variant of AD.  相似文献   

9.
Chordoma is a rare tumor originating from notochordal remnants that is usually diagnosed during midlife. We performed a genomewide analysis for linkage in a family with 10 individuals affected by chordoma. The maximum two-point LOD score based on only the affected individuals was 2.21, at recombination fraction 0, at marker D7S2195 on chromosome 7q. Combined analysis of additional members of this family (11 affected individuals) and of two unrelated families (one with 2 affected individuals and the other with 3 affected individuals), with 20 markers on 7q, showed a maximum two-point LOD score of 4.05 at marker D7S500. Multipoint analysis based on only the affected individuals gave a maximum LOD score of 4.78, with an approximate 2-LOD support interval from marker D7S512 to marker D7S684. Haplotype analysis of the three families showed a minimal disease-gene region from D7S512 to D7S684, a distance of 11.1 cM and approximately 7.1 Mb. No loss of heterozygosity was found at markers D7S1804, D7S1824, and D7S2195 in four tumor samples from affected family members. These results map a locus for familial chordoma to 7q33. Further analysis of this region, to identify this gene, is ongoing.  相似文献   

10.
Tibial muscular dystrophy (TMD) is a rare autosomal dominant distal myopathy with late adult onset. The phenotype is relatively mild: muscle weakness manifests in the patient's early 40s and remains confined to the tibial anterior muscles. Histopathological changes in muscle are compatible with muscular dystrophy, with the exception that rimmed vacuoles are a rather common finding. We performed a genomewide scan, with 279 highly polymorphic Cooperative Human Linkage Center microsatellite markers, on 11 affected individuals of one Finnish TMD family. The only evidence for linkage emerged from markers in a 43-cM region on chromosome 2q. In further linkage analyses, which included three other Finnish TMD families and which used a denser set of markers, a maximum two-point LOD score of 10.14 (recombination fraction of .05) was obtained with marker D2S364. Multipoint likelihood calculations, combined with the haplotype and recombination analyses, restricted the TMD locus to an approximately 1-cM critical chromosomal region without any evidence of heterogeneity. Since all the affecteds share one core haplotype, the dominance of one ancestor mutation is obvious in the Finnish TMD families. The disease locus that was found represents a novel muscular dystrophy locus, providing evidence for the involvement of one additional gene in the distal myopathy group of muscle disorders.  相似文献   

11.
A locus for malignant hyperthermia susceptibility (MHS) has been localized on chromosome 19q12-13.2, while at the same time the gene encoding the skeletal muscle ryanodine receptor (RYR1) also has been mapped to this region and has been found to be tightly linked to MHS. RYR1 was consequently postulated as the candidate for the molecular defect causing MHS, and a point mutation in the gene has now been identified and is thought to be the cause of MH in at least some MHS patients. Here we report the results of a linkage study done with 19q12-13.2 markers, including the RYR1 cDNA, in two Bavarian families with MHS. In one of the families, three unambiguous recombination events between MHS and the RYR1 locus were found. In the second family only one informative meiosis was seen with RYR1. However, segregation analysis with markers for D19S75, D19S28, D19S47, CYP2A, BCL3, and APOC2 shows that the crossovers in the first family involve the entire haplotype defined by these markers flanking RYR1 and, furthermore, reveals multiple crossovers between these haplotypes and MHS in the second family. In these families, pairwise and multipoint lod scores below -2 exclude MHS from an interval spanning more than 26 cM and comprising the RYR1 and the previously described MHS locus. Our findings thus strongly suggest genetic heterogeneity of the MHS trait and prompt the search for another MHS locus.  相似文献   

12.
Autosomal dominant juvenile-onset open-angle glaucoma has been mapped to 1q21-31 in a number of American families. Our study confirms linkage in a Danish five-generation dominant juvenile-onset glaucoma family with a maximum two-point lod score of 6.67 at the D1S210 locus. Multipoint linkage analysis in a nine-generation Swedish family with dominant juvenile-onset glaucoma and iris hypoplasia excludes linkage to the region of approximately 18 cM between loci D1S104 and D1S218, shown to contain the previously mapped glaucoma gene. This study thus provides support for genetic heterogeneity with respect to dominant juvenile-onset glaucoma.  相似文献   

13.
A subset of families with autosomal dominant retinitis pigmentosa (RP) display reduced penetrance with some asymptomatic gene carriers showing no retinal abnormalities by ophthalmic examination or by electroretinography. Here we describe a study of three families with reduced-penetrance RP. In all three families the disease gene appears to be linked to chromosome 19q13.4, the region containing the RP11 locus, as defined by previously reported linkage studies based on five other reduced-penetrance families. Meiotic recombinants in one of the newly identified RP11 families and in two of the previously reported families serve to restrict the disease locus to a 6-cM region bounded by markers D19S572 and D19S926. We also compared the disease status of RP11 carriers with the segregation of microsatellite alleles within 19q13.4 from the noncarrier parents in the newly reported and the previously reported families. The results support the hypothesis that wild-type alleles at the RP11 locus or at a closely linked locus inherited from the noncarrier parents are a major factor influencing the penetrance of pathogenic alleles at this locus.  相似文献   

14.
Autosomal dominant progressive external ophthalmoplegia (adPEO) is a disorder characterized by ptosis, progressive weakness of the external eye muscles, and general muscle weakness. The patients have multiple deletions of mtDNA on Southern blots or in PCR analysis of muscle DNA and a mild deficiency of one or more respiratory-chain enzymes carrying mtDNA-encoded subunits. The pattern of inheritance indicates a nuclear gene defect predisposing to secondary mtDNA deletions. Recently, in one Finnish family, we assigned an adPEO locus to chromosome 10q 23.3-24.3 but also excluded linkage to this same locus in two Italian adPEO families with a phenotype closely resembling the Finnish one. We applied a random mapping approach to informative non-10q-linked Italian families to assign the second locus for adPEO and found strong evidence for linkage on chromosome 3p 14.1-21.2 in three Italian families, with a maximum two-point lod score of 4.62 at a recombination fraction of .0. However, in three additional families, linkage to the same chromosomal region was clearly absent, indicating further genetic complexity of the adPEO trait.  相似文献   

15.
Birt-Hogg-Dubé syndrome (BHD), an inherited autosomal genodermatosis characterized by benign tumors of the hair follicle, has been associated with renal neoplasia, lung cysts, and spontaneous pneumothorax. To identify the BHD locus, we recruited families with cutaneous lesions and associated phenotypic features of the BHD syndrome. We performed a genomewide scan in one large kindred with BHD and, by linkage analysis, localized the gene locus to the pericentromeric region of chromosome 17p, with a LOD score of 4.98 at D17S740 (recombination fraction 0). Two-point linkage analysis of eight additional families with BHD produced a maximum LOD score of 16.06 at D17S2196. Haplotype analysis identified critical recombinants and defined the minimal region of nonrecombination as being within a <4-cM distance between D17S1857 and D17S805. One additional family, which had histologically proved fibrofolliculomas, did not show evidence of linkage to chromosome 17p, suggesting genetic heterogeneity for BHD. The BHD locus lies within chromosomal band 17p11.2, a genomic region that, because of the presence of low-copy-number repeat elements, is unstable and that is associated with a number of diseases. Identification of the gene for BHD may reveal a new genetic locus responsible for renal neoplasia and for lung and hair-follicle developmental defects.  相似文献   

16.
Meckel-Gruber syndrome (MKS), the most common monogenic cause of neural tube defects, is an autosomal recessive disorder characterised by a combination of renal cysts and variably associated features, including developmental anomalies of the central nervous system (typically encephalcoele), hepatic ductal dysplasia and cysts, and polydactyly. Locus heterogeneity has been demonstrated by the mapping of the MKS1locus to 17q21-24 in Finnish kindreds, and of MKS2 to 11q13 in North African-Middle Eastern cohorts. In the present study, we have investigated the genetic basis of MKS in eight consanguineous kindreds, originating from the Indian sub-continent, that do not show linkage to either MKS1 or MKS2. We report the localisation of a third MKS locus ( MKS3) to chromosome 8q24 in this cohort by a genome-wide linkage search using autozygosity mapping. We identified a 26-cM region of autozygosity between D8S586 and D8S1108 with a maximum cumulative two-point LOD score at D8S1179 ( Z(max)=3.04 at theta=0.06). A heterogeneity test provided evidence of one unlinked family. Exclusion of this family from multipoint analysis maximised the cumulative multipoint LOD score at locus D8S1128 ( Z(max)=5.65). Furthermore, a heterozygous SNP in DDEF1, a putative candidate gene, suggested that MKS3 mapped within a 15-cM interval. Comparison of the clinical features of MKS3-linked cases with reports of MKS1- and MKS2-linked kindreds suggests that polydactyly (and possibly encephalocele) appear less common in MKS3-linked families.  相似文献   

17.
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).  相似文献   

18.
Autosomal recessive congenital ichthyosis (ARCI) comprises a group of severe disorders of keratinization, characterized by variable erythema and skin scaling. It is known for its high degree of genetic and clinical heterogeneity. Mutations in the gene for keratinocyte transglutaminase (TGM1) on chromosome 14q11 were shown in patients with ARCI, and a second locus was described, on chromosome 2q, in families from northern Africa. Three other loci for ARCI, on chromosomes 3p and 19p, were identified recently. We have embarked on a whole-genome scan for further loci for ARCI in four families from Germany, Turkey, and the United Arab Emirates. A novel ARCI locus was identified on chromosome 17p, between the markers at D17S938 and D17S1856, with a maximum LOD score of 3.38, at maximum recombination fraction 0.00, at D17S945, under heterogeneity. This locus is linked to the disease in the Turkish family and in the German family. Extensive genealogical studies revealed that the parents of the German patients with ARCI were eighth cousins. By homozygosity mapping, the localization of the gene could then be refined to the 8.4-cM interval between D17S938 and D17S1879. It could be shown, however, that ARCI in the two Arab families is linked neither to the new locus on chromosome 17p nor to one of the five loci known previously. Our findings give evidence of further genetic heterogeneity that is not linked to distinctive phenotypes.  相似文献   

19.
The gene for autosomal recessive juvenile Parkinsonism (AR-JP) recently has been mapped to chromosome 6q25.2-27 in Japanese families. We have tested one Algerian and 10 European multiplex families with early-onset Parkinson disease for linkage to this locus, with marker D6S305. Homogeneity analysis provided a conditional probability in favor of linkage of >.9 in eight families, which were analyzed further with eight microsatellite markers spanning the 17-cM AR-JP region. Haplotype reconstruction for eight families and determination of the smallest region of homozygosity in two consanguineous families reduced the candidate interval to 11.3 cM. If the deletion of two microsatellite markers (D6S411 and D6S1550) that colocalize on the genetic map and that segregate with the disease in the Algerian family is taken into account, the candidate region would be reduced to <1 cM. These findings should facilitate identification of the corresponding gene. We have confirmed linkage of AR-JP, in European families and in an Algerian family, to the PARK2 locus. PARK2 appears to be an important locus for AR-JP in European patients. The clinical spectrum of the disease in our families, with age at onset <=58 years and the presence of painful dystonia in some patients, is broader than that reported previously.  相似文献   

20.
Macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly) is a rare autosomal dominant disorder characterized by thrombocytopenia, giant platelets, and D?hle body-like inclusions in leukocytes. To determine the genetic basis of this disorder, we performed a genome-wide screen for linkage in three families with May-Hegglin anomaly. For the pooled analysis of the three families, three markers on chromosome 22 had two-point logarithm-of-difference (lod) scores greater than 3, with a maximum lod score of 3.91 at a recombination fraction (theta) of 0.076 for marker D22S683. Within the largest family (MHA-1), the maximum lod score was 5.36 at theta=0 at marker D22S445. Fine mapping of recombination events using eight adjacent markers indicated that the minimal disease region of family MHA-1 alone is in the approximately 26 cM region from D22S683 to the telomere. The maximum lod score for the three families combined was 5.84 at theta=0 for marker IL2RB. With the assumption of locus homogeneity, haplotype analysis of family MHA-4 indicated the disease region is centromeric to marker D22S1045. These data best support a minimal disease region from D22S683 to D22S1045, a span of about 1 Mb of DNA that contains 17 known genes and 4 predicted genes. Further analysis of this region will identify the genetic basis of May-Hegglin anomaly, facilitating subsequent characterization of the biochemical role of the disease gene in platelet formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号