首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. When different antigenic variant clones are injected in equal numbers into white mice one variant clone always replaces the other. This phenomenon appears to be a predictable one, even under conditions analogous to a chronic infection. It is hypothesized that a constant ratio is approached between the number of cells of different antigenic serotypes present in a single population, in such a manner that there is always a major antigenic variant and minor populations of different antigenic variants. It is further suggested that these ratios can undergo rapid changes in response to changes in the environment, e.g. nutritional status of the host, changes in body temperature, antibody synthesis, etc. The changes in these ratios are discussed in relation to the mechanism(s) of antigenic variation.  相似文献   

2.
The ecology of antigenic variation   总被引:2,自引:0,他引:2  
A detailed molecular analysis using recombinant DNA technologies is extremely important to our understanding of the phenomena of antigenic variation in the African trypanosomes; however, by itself, it may not completely explain antigenic variation as it occurs in vivo. Several laboratories have demonstrated the ability of one variant population to replace another in vivo as well as the presence of heterogeneous populations of trypanosomes within an individual animal. These two phenomena do not permit us to explain antigen variation solely on the basis of the molecular regulation of variant antigen expression. In addition to studies in molecular biology, it will be necessary to define clearly the differences in growth rates of variant populations and the role of competition between these variants in a single anatomical site. It will also be necessary to determine the influence of various physiological environments on growth rates and the competition between the different variants of a single repertoire. It is concluded that the phenomenon of antigenic variation is a complex problem in ecology and population dynamics as well as molecular regulation. This paper is designated to examine a variety of the ecological parameters presumably involved in antigenic variation.  相似文献   

3.
A detailed molecular analysis using recombinant DNA technologies is extremely important to our understanding of the phenomena of antigenic variation in the African trypanosomes; however, by itself, it may not completely explain antigenic variation as it occurs in vivo. Several laboratories have demonstrated the ability of one variant population to replace another in vivo as well as the presence of heterogeneous populations of trypanosomes within an individual animal. These two phenomena do not permit us to explain antigen variation solely on the basis of the molecular regulation of variant antigen expression. In addition to studies in molecular biology, it will be necessary to define clearly the differences in growth rates of variant populations and the role of competition between these variants in a single anatomical site. It will also be necessary to determine the influence of various physiological environments on growth rates and the competition between the different variants of a single repertoire. It is concluded that the phenomenon of antigenic variation is a complex problem in ecology and population dynamics as well as molecular regulation. This paper is designated to examine a variety of the ecological parameters presumably involved in antigenic variation.  相似文献   

4.
The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic properties of H3 move in a discontinuous, step-wise manner. It is not clear why this punctuated evolution occurs, whether this represents simply the fact that some substitutions affect these properties more than others, or if this is indicative of a changing relationship between the virus and the host. In addition, the role of changing glycosylation of the haemagglutinin in these shifts in antigenic properties is unknown. We analysed the antigenic drift of HA1 from human influenza H3 using a model of sequence change that allows for variation in selective pressure at different locations in the sequence, as well as at different parts of the phylogenetic tree. We detect significant changes in selective pressure that occur preferentially during major changes in antigenic properties. Despite the large increase in glycosylation during the past 40 years, changes in glycosylation did not correlate either with changes in antigenic properties or with significantly more rapid changes in selective pressure. The locations that undergo changes in selective pressure are largely in places undergoing adaptive evolution, in antigenic locations, and in locations or near locations undergoing substitutions that characterise the change in antigenicity of the virus. Our results suggest that the relationship of the virus to the host changes with time, with the shifts in antigenic properties representing changes in this relationship. This suggests that the virus and host immune system are evolving different methods to counter each other. While we are able to characterise the rapid increase in glycosylation of the haemagglutinin during time in human influenza H3, an increase not present in influenza in birds, this increase seems unrelated to the observed changes in antigenic properties.  相似文献   

5.
Surveys of the antigenic properties of a wide range of variants of the H3N2 (Hong Kong) influenza virus subtype have revealed complex patterns of variants cocirculating during each of the main epidemic eras of the subtype. We determined hemagglutinin (HA) gene sequences for 14 isolates chosen to give the wildest possible spread of variant types. The addition of these data to existing HA gene sequence information for other variants provides a comprehensive picture of HA gene evolution during antigenic drift among H3N2 subtype viruses. The data reveal the existence of multiple evolutionary pathways during at least one period of development of the subtype and strikingly demonstrate that amino acid changes are limited to a small number of locations on the HA molecule during antigenic drift. The occurrence of sequential amino acid changes at key positions within these variable regions suggests that the HA structure has remained constant during subtype evolution so that only limited possibilities remain for further antigenic drift among H3N2 viruses.  相似文献   

6.
Serovars jequitaia and tororò of Leptospira biflexa were cultured in the presence of homologous factor serum containing factorial antibodies (FcAbs) to their major antigens. After 39 serial passages they were then re-tested to determine whether their major antigens had remained unchanged. It was found that each parent strain had been replaced by an antigenic variant. The disappearance of each parent strain and its replacement by an antigenic variant was attributed to the selective conditions imposed by FcAbs. The antigenic variants behaved like true mutants. They lacked the major serovar antigens of the parent strains and had acquired some major antigens similar to those of two different serovars, one of which belonged to the same serogroup as the parent strain and the other to a different serogroup. A comparison of the major antigens of the parent strains with those of their antigenic variants indicated that factorial antibodies may be used selectively to obtain antigenic variants with a predefined pattern of major antigens.  相似文献   

7.
During the course of infection in the rat, Trypanosoma lewisi produces 2 antigenic variants: the 1st represents the initial, reproducing population of cells; and the 2nd the nonreproducing, ablastin-inhibited adult population. The specificities of the agglutinins elicited by the variants were studied by adsorption and agglutination methods and the newer immunoelectroadsorption technic. It was found that the reproducing variant has a surface antigen that reacts with the agglutinin specific for the adult variant, but this antigen does not become immunogenic until transformation to the adult variant occurs. It was also found, with fractions of immune sera obtained by gel filtration, that the agglutinin specific for the reproducing variant is IgG and that specific for the adult variant, IgM. The antigenic variants of pathogenic and nonpathogenic trypanosomes are compared, and the roles of trypanocidal and ablastic antibodies in the induction of antigenic variation are discussed.  相似文献   

8.
9.
In the IsTaR 1 serodeme of T. brucei the 3 variant surface glycoprotein (VSG) gene family contains about 10 members, one of which has a telomeric location on a minichromosome. The expression linked copy (ELC) of the 3 VSG gene which occurs in an antigenic variant expressing the 3 VSG, also has a telomeric location but unlike the minichromosomal 3 VSG gene has restriction sites upstream from the 5' barren region. This ELC is retained on the same telomere in a subsequent variant that expresses a telomeric 7 VSG ELC and in relapse variants and procyclic forms derived from variant antigenic types (VATs) 3 and 7. The 7 ELC has a restriction map upstream from the 5' barren region that differs from, but is similar to, that of the 3 ELC. These data indicate that the 3 and 7 ELCs are on different telomeres when expressed.  相似文献   

10.
The protozoan parasite Giardia lamblia is an important causative agent of acute or chronic diarrhoea in humans and various animals. During infection, the parasite survives the hosts reactions by undergoing continuous antigenic variation of its major surface antigen, named VSP (variant surface protein). The VSPs form a unique family of cysteine-rich proteins that are extremely heterogeneous in size. The relevance of antigenic variation for the survival in the host has been most successfully studied by performing experimental infections in a combined mother/offspring mouse system and by using the G. lamblia clone GS/M-83-H7 (human isolate) as model parasite. In-vivo antigenic variation of G. lamblia clone GS/M-83-H7 is characterised by a diversification of the intestinal parasite population into a complex mixture of different variant antigen types. It could be shown that maternally transferred lactogenic anti-VSP IgA antibodies exhibit cytotoxic activity on the Giardia variant-specific trophozoites in suckling mice, and thus express a modulatory function on the proliferative parasite population characteristics. Complementarily, in-vitro as well as in-vivo experiments in adult animals indicated that non-immunological factors such as intestinal proteases may interfere into the process of antigen variation in that they favour proliferation of those variant antigen-type populations which resist the hostile physiological conditions within the intestine. These observations suggest that an interplay between immunological and physiological factors, rather than one of these two factor alone, modulates antigenic diversification of a G. lamblia population within an experimental murine host and thus influences the survival rate and strategy of the parasite.  相似文献   

11.
SYNOPSIS. During the course of infection in the rat, Trypanosoma lewisi produces 2 antigenic variants: the 1st represents the initial, reproducing population of cells; and the 2nd the nonreproducing, ablastin-inhibited adult population. The specificities of the agglutinins elicited by the variants were studied by adsorption and agglutination methods and the newer immunoelectroadsorption technic. It was found that the reproducing variant has a surface antigen that reacts with the agglutinin specific for the adult variant, but this antigen does not become immunogenic until transformation to the adult variant occurs. It was also found, with fractions of immune sera obtained by gel filtration, that the agglutinin specific for the reproducing variant is IgG and that specific for the adult variant, IgM. The antigenic variants of pathogenic and nonpathogenic trypanosomes are compared, and the roles of trypanocidal and ablastic antibodies in the induction of antigenic variation are discussed.  相似文献   

12.
By the introduction of Sabin oral poliovirus vaccine, the circulation of wild type polioviruses has virtually disappeared in Japan. However, an outbreak of poliomyelitis associated with sporadic transmission of type 1 wild strain occurred in Nagano in 1980. Furthermore, we found that some type 1 wild strains were introduced into Japan from abroad in 1981. In recent surveys, the two poliovirus type 1 isolates which have non-vaccine-like antigenic character were detected in Aichi. Then, an investigation to trace the origin of these strains was performed, by using intratypic serodifferentiation and biochemical techniques. Electrophoretic migration patterns of their structural polypeptides were quite different from the vaccine virus. In the oligonucleotide mapping, however, one of them gave patterns very similar to those of the vaccine virus. We could conclude that one originated most probably from wild strains, and the other was an antigenic variant derived from the vaccine virus. It showed that oligonucleotide mapping was a very useful method for identification of antigenic modified Sabin type 1 derivatives.  相似文献   

13.
Trypanosomes are protozoan parasites that cause major diseases in humans and other animals. Trypanosoma brucei and Trypanosoma cruzi are the etiologic agents of African and American Trypanosomiasis, respectively. In spite of large amounts of information regarding various aspects of their biology, including the essentially complete sequences of their genomes, studies directed towards an understanding of mechanisms related to DNA metabolism have been very limited. Recent reports, however, describing genes involved with DNA recombination and repair in T. brucei and T. cruzi, indicated the importance of these processes in the generation of genetic variability, which is crucial to the success of these parasites. Here, we review these data and discuss how the DNA repair and recombination machineries may contribute to strikingly different strategies evolved by the two Trypanosomes to create genetic variability that is needed for survival in their hosts. In T. brucei, two genetic components are critical to the success of antigenic variation, a strategy that allows the parasite to evade the host immune system by periodically changing the expression of a group of variant surface glycoproteins (VSGs). One component is a mechanism that provides for the exclusive expression of a single VSG at any one time, and the second is a large repository of antigenically distinct VSGs. Work from various groups showing the importance of recombination reactions in T. brucei, primarily to move a silent VSG into an active VSG expression site, is discussed. T. cruzi does not use the strategy of antigenic variation for host immune evasion but counts on the extreme heterogeneity of their population for parasite adaptation to different hosts. We discuss recent evidence indicating the existence of major differences in the levels of genomic heterogeneity among T. cruzi strains, and suggest that metabolic changes in the mismatch repair pathway could be an important source of antigenic diversity found within the T. cruzi population.  相似文献   

14.
Sindbis virus variants evidencing a complex and bidirectional tendency toward spontaneous antigenic change were isolated and characterized. Variants were selected on the basis of their escape from neutralization by individual monoclonal antibodies to either of the two envelope glycoproteins, E2 and E1. Multisite variants, including one altered in three neutralization sites, were obtained by selecting mutants consecutively in the presence of different neutralizing monoclonal antibodies. Two phenotypic revertants, each of which reacquired prototype antigenicity, were back-selected on the basis of their reactivity with a neutralizing monoclonal antibody. An incidental oligonucleotide marker distinguished these and the variant from which they arose from parental Sindbis virus and other mutants, thereby confirming that the revertants were true progeny of the antigenic variant. Prototype Sindbis virus and variants derived from it were compared on the basis of their reactivities with each of a panel of monoclonal antibodies; patterns revealed a minimum of five independently mutable Sindbis virus neutralization epitopes, segregating as three antigenic sites (two E2 and one E1).  相似文献   

15.
Antigenically variable RNA viruses are significant contributors to the burden of infectious disease worldwide. One reason for their ubiquity is their ability to escape herd immunity through rapid antigenic evolution and thereby to reinfect previously infected hosts. However, the ways in which these viruses evolve antigenically are highly diverse. Some have only limited diversity in the long-run, with every emergence of a new antigenic variant coupled with a replacement of the older variant. Other viruses rapidly accumulate antigenic diversity over time. Others still exhibit dynamics that can be considered evolutionary intermediates between these two extremes. Here, we present a theoretical framework that aims to understand these differences in evolutionary patterns by considering a virus's epidemiological dynamics in a given host population. Our framework, based on a dimensionless number, probabilistically anticipates patterns of viral antigenic diversification and thereby quantifies a virus's evolutionary potential. It is therefore similar in spirit to the basic reproduction number, the well-known dimensionless number which quantifies a pathogen's reproductive potential. We further outline how our theoretical framework can be applied to empirical viral systems, using influenza A/H3N2 as a case study. We end with predictions of our framework and work that remains to be done to further integrate viral evolutionary dynamics with disease ecology.  相似文献   

16.
Rapid identification of influenza antigenic variants will be critical in selecting optimal vaccine candidates and thus a key to developing an effective vaccination program. Recent studies suggest that multiple simultaneous mutations at antigenic sites accumulatively enhance antigenic drift of influenza A viruses. However, pre-existing methods on antigenic variant identification are based on analyses from individual sites. Because the impacts of these co-evolved sites on influenza antigenicity may not be additive, it will be critical to quantify the impact of not only those single mutations but also multiple simultaneous mutations or co-evolved sites. Here, we developed and applied a computational method, AntigenCO, to identify and quantify both single and co-evolutionary sites driving the historical antigenic drifts. AntigenCO achieved an accuracy of up to 90.05% for antigenic variant prediction, significantly outperforming methods based on single sites. AntigenCO can be useful in antigenic variant identification in influenza surveillance.  相似文献   

17.
Flagellin (fliC) genes of 12 Shigella boydii and five Shigella dysenteriae strains were characterized. Though these strains are nonmotile, the cryptic fliCSB gene, cloned from S. boydii strain C3, is functional for expression of flagellin. It consists of 1,704 bp, and encodes 568 amino acid residues (57,918 Da). The fliCSD gene from S. dysenteriae strain 16 consists of 1,650 bp encoding 549 amino acid residues (57,591 Da) and contains an IS1 element inserted in its 3' end. The two genes are composed of the 5'-constant, central variable and 3'-constant sequences, like other known fliC genes. The two genes share high homology in nucleotide and amino acid sequences with each other and also with the Escherichia coli fliCE gene, indicating that both genes are closely related to the fliCE gene. Comparison of the central variable sequences of six different fliC genes showed that the fliCSB and fliCSD genes share low homology in amino acid sequence with the other fliC genes, suggesting that they encode antigenic determinants intrinsic to respective subgroups. However, Southern blotting using as probes the central variable sequences of several fliC genes showed that four of 12 S. boydii strains have a fliC gene similar to that of Shigella flexneri, and that among five fliC genes from S. dysenteriae strains, one is similar to that of S. flexneri, two are similar to that of S. boydii, and only one is unique to S. dysenteriae. Some of these variant alleles were verified by immunoblotting with flagellins produced from cloned fliC genes. The presence of variant fliC alleles in S. boydii and S. dysenteriae indicates that subdivision into subgroups does not reflect the ancestral flagella H antigenic relationships. These data will be useful in considering the evolutionary divergence of the Shigella spp..  相似文献   

18.
Albach, Richard A. (Lutheran General Hospital, Park Ridge, Ill.), James G. Shaffer, and Robert H. Watson. Morphology, antigenicity, and nucleic acid content of the Bacteroides sp. used in the culture of Entamoeba histolytica. J. Bacteriol. 90:1045-1053. 1965.-Certain changes in morphology, antigenicity, and nucleic acid content that occur in a culture of Bacteroides sp. in the presence of penicillin G in CLG medium are described. This "variant" is one of seven recovered in several laboratories, all of which are descendants of the original Bacteroides isolated by Shaffer and Frye. Penicillin-inhibited cells of this culture are currently being used in the routine propagation of Entamoeba histolytica in CLG medium. Evidence is presented for the loss of ability to react with antibody in these penicillin-inhibited bacteria in CLG medium, when studied by fluorescent-antibody techniques. The implications of the antigenic changes observed as they pertain to similar antigenic studies of the amoebas are discussed. A pronounced reduction in the ribonucleic acid (RNA) content of such penicillin-inhibited cells was also observed. The potential importance of the changes that occur in the RNA of these cells with respect to considerations of the growth requirements of the amoebas is also discussed.  相似文献   

19.
Mutants of Bradyrhizobium sp (Cajanus) ARS39, resistant to different concentrations of sodium azide (110 to 200 μg ml?1) were isolated and characterized for the cultural, physiological and serological properties; and were compared with the wild type strain ARS39. Among the 51 Azir mutants, only one was found to be a non-nodulating and acid producer. A large number of Azir mutants showed variations in more than one property viz. antigenic constitution and tolerance to temperature and pH. The variations in these properties were not always related to their level of azide resistance, indicating that mutation to sodium azide could involve more than one gene locus. Antigenic analysis could further resolve differences among the mutants, many of which were otherwise identical in all other characteristics. Some of the mutants belonging to same serogroup also differed significantly in their resistance to sodium azide, indicating that resistance to different concentrations of sodium azide may not always induce identical antigenic changes. Three mutants Azi29, 36 and 35, showing striated growth, were the only mutants to exhibit altered protein profile also. This suggests that there is a possibility of link between the altered growth morphology and the protein profile of mutants.  相似文献   

20.
After mutagenesis of mouse mastocytoma P815, it is possible to obtain at high frequency stable tumor cell variants (tum-) that are rejected by syngeneic DBA/2 mice. Most of the variants express one or more new individual antigens specific for each variant, that are detectable in vitro by cytolytic T cells (CTL). Somatic hybrids were prepared either between tum- variants and the original P815 clone, or between different variants. Antigen expression of the hybrids was assessed by using long-term CTL clones that recognize specifically the new antigen present on the variants. Expression of tum- variant antigens behaved as a dominant trait in the hybrids. By submitting the somatic hybrids to selection with CTL clones, it was possible to obtain antigen-loss hybrid variants. The analyses of these antigen-loss variants showed that two variant-specific antigenic determinants associated with one of the variant fusion partners could be lost independently. Like the parental tum- variants, both the (tum+ X tum-) and (tum- X tum-) hybrids failed to form tumors in normal mice but formed tumors in irradiated mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号