首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbivory imposes substantial selection pressure on plants, with the ability to regrow and maintain reproductive success a challenging but often necessary response by the plant. Despite the commonness of herbivore-induced damage, vast variation in tolerance ability exists among plants. Recent studies have suggested the role of endoreduplication (increasing ploidy within an individual) and the pentose phosphate pathway (a metabolic pathway that supports both primary and secondary metabolism) in contributing to the variation in tolerance ability among genotypes of Arabidopsis thaliana. We measured natural variation in apical meristem damage frequency, endoreduplication, and the sequence of G6PD1, an important gene in the pentose phosphate pathway, and related them to variation in tolerance of natural populations of A. thaliana over a portion of its native European range. Variation among populations in tolerance was significantly positively related to damage frequency, suggesting the potential for directional selection for tolerance ability as a product of damage frequency. We also discovered likely loss-of-function G6PD1 alleles in two populations, both of which displayed among the lowest levels of tolerance of all populations assessed. In addition, populations with the greatest increase in endopolyploidy also had the greatest ability to tolerate damage while populations with the greatest reduction in endopolyploidy had the lowest ability to tolerate damage. This study provides an assessment of variation in tolerance, damage frequency, G6PD1 sequence, and endopolyploidy in natural populations of A. thaliana, and also contributes to the growing body of research on the contributions of these specific molecular mechanisms to the tolerance response.  相似文献   

2.
Relative to an equivalent source of variation that do not present a hidden state, cryptic genetic variation is likely to be an effective source for possible adaptations at times of atypical environmental conditions. In addition to environmental perturbations, it has also been proposed that genetic disturbances can generate release of cryptic genetic variation. The genetic basis and physiology of olfactory response in Drosophila melanogaster is being studied profusely, but almost no analysis has addressed the question if populations harbor cryptic genetic variation for this trait that only manifests when populations experiences a typical or novel conditions. We quantified olfactory responses to benzaldehyde in both larval and adult lifecycle stages among samples of chromosome two substitution lines extracted from different natural populations of Argentina and substituted into a common inbred background. We also evaluated whether an effect of genetic background change, occurred during chromosome substitution, affect larval and adult olfactory response in terms of release of cryptic genetic variation. Results indicate the presence of genetic variation among chromosome substitution lines in both lifecycle stages analyzed. The comparative analyses between chromosome 2 substitution lines and isofemale lines used to generate the chromosome 2 substitution lines shown that only adults exhibited decanalizing process for olfactory response to benzaldehyde in natural populations of D. melanogaster, i.e., release of hidden genetic variation. We propose that this release of hidden genetic variation in adult flies is a consequence of the shift in genetic background context that happens in chromosome 2 substitution lines, that implies the disruption of natural epistatic interactions and generation of novel ones. All in all, we have found that changes across D. melanogaster development influence visible and cryptic natural variation of olfactory behavior. In this sense, changes in the genetic background can affect gene-by-gene interactions (epistasis) generating different or even novel phenotypes as consequence of phenotypic outcome of cryptic genetic variation.  相似文献   

3.
The theory of evolution predicts that the rate of adaptation of a population is a function of the amount of genetic variation present in the population. This has been experimentally demonstrated in Drosophila populations in which genetic variability was increased either by mass hybridization of two gene pools, or by X-irradiation.—Mutator genes increase the spontaneous mutation rates of their carriers. We have now studied the effects of a third-chromosome mutator gene, mt, on the rate of adaptation of laboratory populations. Initially, experimental and control populations had similar genetic constitutions except for the presence or absence of the mt gene. The populations were maintained for 20–25 generations by "serial transfer" under conditions of very intense selection.—The number of flies produced per unit time remained constant throughout the experiment in the experimental as well as in the control populations. However, in the mutator-carrying populations the average longevity of the flies (and consequently the average population size) gradually decreased. Under the experimental conditions natural selection is unable to counteract completely the increased input of deleterious mutations due to the mt gene.  相似文献   

4.
Phenotypic variation in ecologically important traits may vary at large and small geographic scales, and may be shaped by natural selection. Here our explicit aim is to evaluate phenotypic differentiation among local populations and examine its relationship with ecological edaphic and climatic features that could lead to local adaptation. We characterized six populations of the model plant Arabidopsis thaliana over 3 years in the field in its native range. At each site, we measured edaphic conditions and aboveground and belowground phenotypes. In addition, we grew plants from the six characterized populations in a common greenhouse along with an additional fifteen populations from the Iberian Peninsula to examine evolutionary and ecological differentiation among populations, and relationships between geographic and ecological distance to phenotypic differences among populations. Significant differences in aboveground and belowground traits, population density, and micro- and macro-nutrient soil concentrations were found among the field populations. In particular, root architectural traits differed significantly among field populations. Complex patterns of ecological differences among population and plant phenotypes emerged when examining edaphic conditions in the Extremadura region, and geographic and climate variables at a broader scale of the Iberian Peninsula. We report levels of phenotypic variation at the local scale comparable to those found at broad geographic scales and report that local edaphic conditions contribute to population-level phenotypic variation in root and shoot traits. To our knowledge, these are the first reports of among population root architectural variation from natural field populations for this model organism. We demonstrate how ecological features, such as soil nutrients, can be associated with the phenotypic variation of A. thaliana measured in natural populations and may contribute to adaptive differentiation at a local scale.  相似文献   

5.
Ernst Mayr said that one of Darwin's greatest contributions was to show scholars the way to population thinking, and to help them discard a mindset of typological thinking. Population thinking rejects a focus on a central representative type, and emphasizes the variation among individuals. However, Mayr's choice of terms has led to confusion, particularly among biologists who study natural populations. Both population thinking and the concept of a biological population were inspired by Darwin, and from Darwin the chain for both concepts runs through Francis Galton who introduced the statistical usage of "population" that appears in Mayr's population thinking. It was Galton's "population" that was modified by geneticists and biometricians in the early 20th century to refer to an interbreeding and evolving community of organisms. Under this meaning, a population is a biological entity and so paradoxically population thinking, which emphasizes variation at the expense of dwelling on entities, is usually not about populations. Mayr did not address the potential for misunderstanding but for him the important part of the population concept was that the organisms within a population were variable, and so he probably thought there should not be confusion between population thinking and the concept of a population.  相似文献   

6.
Genome-wide association studies (GWAS) have in recent years discovered thousands of associated markers for hundreds of phenotypes. However, associated loci often only explain a relatively small fraction of heritability and the link between association and causality has yet to be uncovered for most loci. Rare causal variants have been suggested as one scenario that may partially explain these shortcomings. Specifically, Dickson et al. recently reported simulations of rare causal variants that lead to association signals of common, tag single nucleotide polymorphisms, dubbed "synthetic associations". However, an open question is what practical implications synthetic associations have for GWAS. Here, we explore the signatures exhibited by such "synthetic associations" and their implications based on patterns of genetic variation observed in human populations, thus accounting for human evolutionary history -a force disregarded in previous simulation studies. This is made possible by human population genetic data from HapMap 3 consisting of both resequencing and array-based genotyping data for the same set of individuals from multiple populations. We report that synthetic associations tend to be further away from the underlying risk alleles compared to "natural associations" (i.e. associations due to underlying common causal variants), but to a much lesser extent than previously predicted, with both the age and the effect size of the risk allele playing a part in this phenomenon. We find that while a synthetic association has a lower probability of capturing causal variants within its linkage disequilibrium block, sequencing around the associated variant need not extend substantially to have a high probability of capturing at least one causal variant. We also show that the minor allele frequency of synthetic associations is lower than of natural associations for most, but not all, loci that we explored. Finally, we find the variance in associated allele frequency to be a potential indicator of synthetic associations.  相似文献   

7.
Natural selection eliminates phenotypic variation from populations, generation after generation-an observation that haunted Darwin. So, how does new phenotypic variation arise, and is it always random with respect to fitness? Repeated behavioral responses to a novel environment-particularly those that are learned-are typically advantageous. If those behaviors yield more extreme or novel morphological variants via developmental plasticity, then previously cryptic genetic variation may be exposed to natural selection. Significantly, because the mean phenotypic effect of "use and disuse" is also typically favorable, previously cryptic genetic variation can be transformed into phenotypic variation that is both visible to selection and biased in an adaptive direction. Therefore, use-induced developmental plasticity in a very real sense "creates" new phenotypic variation that is nonrandom with respect to fitness, in contrast to the random phenotypic effects of mutation, recombination, and "direct effects" of environment (stress, nutrition). I offer here (a) a brief review of the immense literature on the effects of "use and disuse" on morphology, (b) a simple yet general model illustrating how cryptic genetic variation may be exposed to selection by developmentally plastic responses that alter trait performance in response to "use and disuse," and (c) a more detailed model of a positive feedback loop between learning (handed behavior) and morphological plasticity (use-induced morphological asymmetry) that may rapidly generate novel phenotypic variation and facilitate the evolution of conspicuous morphological asymmetries. Evidence from several sources suggests that handed behaviors played an important role both in the origin of novel forms (asymmetries) and in their subsequent evolution.  相似文献   

8.
"中心和边缘"假说认为非洲是人类演化的中心地区,东亚等地区是边缘地区。在边缘地区,人群的地区性形态特征出现较早,可上溯到直立人生活时期;在中心地区,人群的地区性形态特征出现较晚。Bodo人类头骨化石和南京1号人类头骨化石分别出自中心地区和边缘地区,二者年代都是距今60万年左右,二者都保留有面颅。因此,Bodo人类头骨化石和南京1号人类头骨化石是检测"中心和边缘"假说的最合适的材料。本文是对南京1号和Bodo头骨的面颅测量性特征作比较研究。研究结果表明:1.二者面颅测量性特征上的差别远大于这两个相应地区现代人群之间的差别,提示了人类的地区性体质形态差别早在60万年前就很明显;2.东亚的南京1号人类头骨和东非的Bodo人类头骨尽管同样古老,但各自与当地区的现代人群的面颅上的差异情况并不一致。Bodo头骨与东非现代人群显得差异较大,南京1号头骨与东亚现代人群显得较相近。这种相近,提示了在东亚这个"边缘地区",现代人群的面颅测量性特征可追溯到以南京1号头骨为代表的远古人类那里,而在"中心地区",现代人群的面颅测量性特征还很难与以Bodo为代表的远古人群相联系。本项研究结果与"中心和边缘"假说的推测相符合。  相似文献   

9.
The demand for renewable and sustainable energy has generated considerable interest in the conversion of cellulosic biomass into liquid fuels such as ethanol using a filamentous fungus. While attempts have been made to study cellulose metabolism through the use of knock-out mutants, there have been no systematic effort to characterize natural variation for cellulose metabolism in ecotypes adapted to different habitats. Here, we characterized natural variation in saccharification of cellulose and fermentation in 73 ecotypes and 89 laboratory strains of the model fungus Neurospora crassa. We observed significant variation in both traits among natural and laboratory generated populations, with some elite strains performing better than the reference strain. In the F1 population N345, 15% of the population outperformed both parents with the top performing strain having 10% improvement in ethanol production. These results suggest that natural alleles can be exploited through fungal breeding for developing elite industrial strains for bioethanol production.  相似文献   

10.
The ultimate goal of ecological restoration is to create a self-sustaining ecosystem that is resilient to perturbation without further assistance. Genetic variation is a prerequisite for evolutionary response to environmental changes. However, few studies have evaluated the genetic structure of restored populations of dominant plants. In this study, we compared genetic variation of the restored populations with the natural ones in Cyclobalanopsis myrsinaefolia, a dominant species of evergreen broadleaved forest. Using eight polymorphic microsatellite loci, we analyzed samples collected from restored populations and the donor population as well as two other natural populations. We compared the genetic diversity of restored and natural populations. Differences in genetic composition were evaluated using measurements of genetic differentiation and assignment tests. The mean number of alleles per locus was 4.65. Three parameters (A, A R, and expected heterozygosity) of genetic variation were found to be lower, but not significantly, in the restored populations than they were in the natural populations, indicating a founder effect during the restoration. Significant but low F ST (0.061) was observed over all loci, indicating high gene flow among populations, as expected from its wind-pollination. Differentiation between the two restored populations was smallest. However, differences between the donor population and the restored populations were higher than those between other natural populations and the restored populations. Only 13.5% and 25.7% individuals in the two restored populations were assigned to the donor population, but 54.1 and 40% were assigned to another natural population. The genetic variation of the donor population was lowest, and geographic distances from the restoration sites to the donor site were much higher than the other natural populations, indicating that the present donor likely was not the best donor for these ecological restoration efforts. However, no deleterious consequences might be observed in restored populations due to high observed heterozygosity and high gene flow. This study demonstrates that during the restoration process, genetic structures of the restored populations may be biased from the donor population. The results also highlight population genetic knowledge, especially of gene flow-limited species, in ecological restoration.  相似文献   

11.
The genetic analysis is made on the population of the European smelt Osmerus eperlanus occasionally introduced to Lake Syamozero (Karelia) and of the vendace Coregous albula supposedly acclimatized in Solovetskie Islands as a result of fish cultural activities of the Solovetskii Monastery. They are compared with several natural populations—possible donors for both introductions. Genetic variation in a sample of smelt was estimated by means of restrictase analysis of mtDNA (fragment ND1/ND2) in samples of vendace—by means of allozyme analysis of six isoenzyme systems. The probable population for the Syamozero smelt is the population of Onega Lake in spite of the previously noted greater morphological similarity of colonizers with the smelt of Ladoga Lake. A high level of genetic variation in the Syamozero smelt in comparison with native populations indicates that, beside the introduction from Onega Lake, there were repeated introductions from neighboring water bodies. The genetic analysis of the Solovetskaya vendace does not prove that the vendace appeared on islands due to acclimatization. Frequencies of alleles of allozyme loci in the Solovetskaya population significantly differ from frequencies in continental populations. Still, it is compared with some populations of the Arkhangelsk oblast. Estimations of genetic diversity of the Solovetskaya vendace turned out to be comparable with those in native populations.  相似文献   

12.
Heritable phenotypic variation in plants can be caused not only by underlying genetic differences, but also by variation in epigenetic modifications such as DNA methylation. However, we still know very little about how relevant such epigenetic variation is to the ecology and evolution of natural populations. We conducted a greenhouse experiment in which we treated a set of natural genotypes of Arabidopsis thaliana with the demethylating agent 5-azacytidine and examined the consequences of this treatment for plant traits and their phenotypic plasticity. Experimental demethylation strongly reduced the growth and fitness of plants and delayed their flowering, but the degree of this response varied significantly among genotypes. Differences in genotypes’ responses to demethylation were only weakly related to their genetic relatedness, which is consistent with the idea that natural epigenetic variation is independent of genetic variation. Demethylation also altered patterns of phenotypic plasticity, as well as the amount of phenotypic variation observed among plant individuals and genotype means. We have demonstrated that epigenetic variation can have a dramatic impact on ecologically important plant traits and their variability, as well as on the fitness of plants and their ecological interactions. Epigenetic variation may thus be an overlooked factor in the evolutionary ecology of plant populations.  相似文献   

13.
The yeast S. cerevisiae is a central model organism in eukaryotic cell studies and a major component in many food and biotechnological industrial processes. However, the wide knowledge regarding genetics and molecular biology of S. cerevisiae is based on an extremely narrow range of strains. Studies of natural populations of S. cerevisiae, not associated with human activities or industrial fermentation environments, are very few. We isolated a panel of S. cerevisiae strains from a natural microsite, "Evolution Canyon" at Mount Carmel, Israel, and studied their genomic biodiversity. Analysis of 19 microsatellite loci revealed high allelic diversity and variation in ploidy level across the panel, from diploids to tetraploids, confirmed by flow cytometry. No significant differences were found in the level of microsatellite variation between strains derived from the major localities or microniches, whereas strains of different ploidy showed low similarity in allele content. Maximum genetic diversity was observed among diploids and minimum among triploids. Phylogenetic analysis revealed clonal, rather than sexual, structure of the triploid and tetraploid subpopulations. Viability tests in tetrad analysis also suggest that clonal reproduction may predominate in the polyploid subpopulations.  相似文献   

14.
Junk DNA has been long appreciated as an evolutionary facilitator because it can participate in the causation of genetic variation such as chromosome rearrangements and can be exapted into coding or regulatory elements. Recently, it has been proposed that junk DNA variation within natural populations indirectly causes a phenotypic heterogeneity that subsequently promotes genetic capacitance, i.e., the random fluctuation of genetic variation. Junk DNA role as capacitor might drive population traits such as sexual dimorphism, spatiotemporal dynamics, or genetic diversification leading into speciation. Whether the human species also showed junk DNA-based capacitance manifested as a junk DNA-dependent phenotypic heterogeneity that contributed to the etiology and expression of diseases or the evolutionary history of human populations is intriguing. Because the human Y chromosome is highly enriched in junk DNA, humans are sexually dimorphic for the genomic content in junk DNA. Thus, it would be expected that junk DNA-based capacitance in humans were manifested as a sexual dimorphism for phenotypic heterogeneity. Here, I gather supporting evidence for the existence of a sexual dimorphism for putative junk DNA-based phenotypic heterogeneity by analyzing same-sex twin pairs phenotypic concordance.  相似文献   

15.
Li Q  He T  Xu Z 《Biochemical genetics》2005,43(7-8):387-406
The majority of research in genetic diversity yields recommendations rather than actual conservation achievements. We assessed the efficacy of actual in situ and ex situ efforts to conserve Parashorea chinensis (Dipterocarpaceae) against the background of the geographic pattern of genetic variation of this species. Samples from seven natural populations, including three in a nature reserve, and one ex situ conservation population were studied. Across the natural populations, 47.8% of RAPD loci were polymorphic; only 20.8% on average varied at the population level. Mean population genetic diversity was 0.787 within natural populations and 1.410 for the whole species. Significant genetic differentiation among regions and isolation by distance were present on larger scales (among regions). AMOVA revealed that the majority of the among-population variation occurred among regions rather than among populations within regions. Regression analysis, Mantel test, principal coordinates analysis, and cluster analysis consistently demonstrated increasing genetic isolation with increasing geographic distance. Genetic differentiation within the region was quite low compared to that among regions. Multilocus spatial autocorrelation analysis of these three populations revealed random distribution of genetic variation in two populations, but genetic clustering was detected in the third population. The ex situ conserved population contained a medium level of genetic variation compared with the seven natural populations; it contained 77.1% of the total genetic variation of this species and 91% of the moderate to high frequency RAPD fragments (f > 0.05). Exclusive bands were detected in natural populations, but none were found in the ex situ conserved population. The populations protected in the nature reserve contained most of the genetic variation of the whole species, with 81.4% of the total genetic variation and 95.7% of the fragments with moderate to high frequency (f > 0.05) of this species conserved. The results show that the ex situ conserved population does not contain enough genetic variation to meet the need of release in the future, and that more extensive ex situ sampling in natural populations TY, NP, HK, and MG is needed. The in situ conserved population contains representative genetic variation to maintain long-term survival and evolutionary processes of P. chinensis.  相似文献   

16.
The Barrens Topminnow (Fundulus julisia) has undergone a rapid and dramatic decline. In the 1980s, at least twenty localities with Barrens Topminnows were known to exist in the Barrens Plateau region of middle Tennessee; currently only three areas with natural (not stocked) populations remain. The long-term survival of the Barrens Topminnow will depend entirely on effective management and conservation efforts. Captive propagation and stocking of captive-reared juveniles to suitable habitats have successfully established a handful of self-sustaining populations. However, very little is known about the genetic composition of source and introduced populations including levels of genetic diversity and structuring of genetic variation. Here we use both mitochondrial sequence data and genotypes from 14 microsatellite loci to examine patterns of genetic variation among ten sites, including all sites with natural populations and a subset of sites with introduced (stocked) populations of this species. Mitochondrial sequence analysis reveals extremely low levels of variation within populations and fixed differences between drainages. Microsatellite genotype data shows higher levels of genetic variability and a molecular signature consistent with a recent history of population bottlenecks. Measures of genetic diversity at microsatellite loci including allelic richness are similar within source and introduced populations. Bayesian assignment tests and analysis of molecular variation (AMOVA) support two distinct populations, consistent with drainage boundaries. Results from AMOVA analysis also suggest low levels of genetic connectivity between isolated populations within the same drainage. Here we propose two distinct evolutionary significant units (ESUs) and two management units that reflect this population substructure and warrant consideration in future management efforts.  相似文献   

17.
The analysis of chromosome pairing during meiosis is important for understanding the relationships between different genomes. To evaluate the diversity of chromosome pairing behavior in the wild species of Roegneria sinica var. media Keng with St and H genomes in Triticeae (Poaceae), differences and similarities in the meiotic chromosome pairing behaviors of the two genomes in two populations of R. sinica var. media, were analyzed using genomic in situ hybridization. Chromosome pairing at meiotic metaphase I in the two populations of R. sinica var. media mainly formed bivalents, although several univalents, trivalents and quadrivalents also occurred. Chromosome pairings occurred mainly between homologous chromosomes. However, some non-homologous pairings were observed under natural conditions. No significant differences in karyotype were found between the St and H genomes. Chromosome pairing behaviors differed between and within the two populations. Genetic variation occurred mainly within populations (94.04 %), and variation was more abundant in one population than the other. The genomes St and H differed, but there was some relationship between the two genomes. These findings suggest that homoeologous pairing of chromosomes or exchanges occurred between different genomes of the wild species in Triticeae during evolution. The findings also provide conclusive cytological evidence for genetic variation within the wild species, which forms the basis of their genetic diversity.  相似文献   

18.
19.
The high value of sable (Martes zibellina L.) fur and stable demand for it over the centuries have led to suboptimal hunting patterns and, as a result, considerable fluctuations in the sizes of natural populations of this species. To maintain the traditional export of sable fur, efforts towards commercial domestication of sable have been made in Russia. The first farm population of sable consisted of animal from eight natural populations was founded in 1929. After the problems related to breeding in captivity were solved, directional selection began. Eighty years of breeding have resulted in sable herds with homogeneous quantitative characters. Prospects for further breeding depend on the current level of genetic diversity in the captive populations of sables formed during the first stages of domestication. The sable populations of the Pushkinsky and Saltykovsky fur farms located in Moscow oblast, which were the objects of this study, are the progenitors of the existing captive populations. The first estimation of genetic variation of this species by means of a panel of micro-satellite markers was developed for this study. Two captive sable populations were analyzed using ten micro-satellite loci; a total of 75 alleles were found in both populations. Population-specific alleles were identified (6 and 13 in the Pushkinsky and Saltykovsky populations, respectively). The populations studied were found to be differentiated with respect to four microsatellite loci.  相似文献   

20.
An experimental plan for an exhaustive determination of genic variation at structural gene loci is presented. In the initial steps of this program, 146 isochromosomal lines from 12 geographic populations of D. pseudoobscura were examined for allelic variation of xanthine dehydrogenase by the serial use of 4 different electrophoretic conditions and a head stability test. The 5 criteria revealed a total of 37 allelic classes out of the 146 genomes examined where only 6 had been previously revealed by the usual method of gel electrophoresis. This immense increase in genic variation also showed previously unsuspected population differences between the main part of the species distribution and the isolated population of Bogotá population. The average heterozygosity at the Xdh locus is at least 72% in natural populations. This result, together with the very large number of alleles segregating and the pattern of allelic frequencies, has implications for theories of genetic polymorphism which are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号