首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of E. coli DNA polymerase I by 1,10-phenanthroline.   总被引:1,自引:0,他引:1  
A 1,10-phenanthroline-cuprous ion complex is a potent reversible inhibitor of E. coli DNA polymerase I yielding 50% inhibition in the micromolar concentration range. The 2:1 1,10-phenanthroline-cuprous ion complex is most probably the inhibitory species. Complexes of cupric ion and 1,10-phenanthroline have no apparent kinetic effect. The previously reported inhibition of the enzyme by 1,10-phenanthroline (1,2) is most likely due to the formation of this complex from thiols normally added to the assay mixtures and trace amounts of cupric ion invariably present notwithstanding reasonable precaution. The reversible and instantaneous 1,10-phenanthroline inhibition observed for other polymerases may be due to this unique inhibitory species and not coordination of a catalytically important zinc ion at the active site by the chelating agent.  相似文献   

2.
E. gracilis DNA dependent RNA polymerase I has been purified to homogeneity. α-amanitin, over the concentration range 0.05 to 200 μg/ml, does not affect its activity, consistent with its being classified as an RNA polymerase I. Based on a molecular weight of 624,000 daltons the enzyme contains 2.2 g atom of Zn but no Mn, Cu, Fe, as determined by microwave excitation emission spectrometry. Zinc is essential for activity since the chelating agent, 1,10-phenanthroline, inhibits enzymatic function but its non-chelating analogue, 4,7-phenanthroline is ineffective. Thus, like the RNA polymerase II, zinc is a catalytically essential component of E. gracilis RNA polymerase I (1).  相似文献   

3.
Neomycin inhibits in vitro DNA dependent DNA and RNA synthesis catalyzed by DNA polymerase I and RNA polymerase from E. coli. The effect of the antibiotic is more pronounced towards DNA synthesis. The inhibition of DNA synthesis is competitive with template DNA, does not reverse with excess deoxynucleoside triphosphate, Mg2+ or enzyme E. coli DNA polymerase I. Neomycin does not reduce the number of potential 3′ -OH end or primer. It seems to shorten the size of the newly formed polynucleotide.  相似文献   

4.
5.
Purified RNA polymerase, DNA polymerase III and unwinding protein of Escherichiacoli catalyze limited rifampicin sensitive fd or ØX 174 DNA-dependent DNA synthesis. A protein has been partially purified from E.coli which stimulates rifampicin sensitive dXMP incorporation in this system 20 to 30 fold. This protein also stimulates DNA synthesis catalyzed by DNA polymerases I and II; the stimulation occurs in reactions primed with natural and synthetic DNAs as well as RNA-DNA hybrids. The protein is not a product of the known dna genes. In contrast to the above system of purified enzymes, rifampicin sensitive dXMP incorporation in crude extracts of E.coli is specifically dependent on fd but not ØX 174 DNA. An additional factor has been isolated from extracts of E.coli which restores specificity to the purified rifampicin sensitive system by preventing ØX 174 DNA from serving as a template.  相似文献   

6.
An enzyme, ribonucleotide polymerase, isolated from the yeast phase of a fungus, Histoplasma capsulatum has been found to stimulate the incorporation of dTMP in the reaction catalysed by DNA polymerase from H. capsulatum and E. coli. The stimulation is dependent on the amount of ribonucleotide polymerase added. The data indicate that protein-protein interaction is responsible for the increase in DNA synthesis. It is suggested that ribonucleotide polymerase may be involved in supplying short RNA primers for DNA polymerase.  相似文献   

7.
DNA polymerase activities in cell-free lysates of unfertilized eggs, larvae and immature ovaries of Xenopuslaevis were compared to purified E.coli DNA polymerase I using several natural and synthetic templates. The templates were tested as the native and denatured forms of normal and DNase I treated molecules. Although the Xenopus polymerases tended to prefer DNase I treated Xenopus DNA over the other templates tested, so did the E.coli polymerase I. In general, the template preferences of the polymerases studied depended in complex ways on both the form and the species of origin of the template.  相似文献   

8.
The addition of the acidic polymers heparin or polyxanthylic acid to rabbit spermatozoa or sperm heads previously exposed to disulfide reducing agents released sperm DNA template restriction and stimulated high levels of incorporation of DNA precursor into DNA, as assayed with exogenous DNA polymerase. Incorporation did not occur in the presence of DNAase, or in the absence of magnesium ion, any of the four deoxyribonucleotides, or E. coli DNA polymerase. This represents the first report that spermatozoa can synthesize DNA in vitro.  相似文献   

9.
10.
A thermostable protein that strongly inhibits the soluble E. coli D-alanine carboxypeptidase was isolated from a cell-free extract of E. coli B. The inhibitor was purified 140-fold by heat treatment, selective precipitation at pH 4.5, ion exchange chromatography on DEAE-cellulose and gel chromatography on Sephadex G-100. Inhibition of soluble D-alanine carboxypeptidase by this inhibitor is reversed by cations such as Mg++ or Na+ and abolished by digestion of the inhibitor with proteolytic enzymes. The inhibitor does not affect either the particulate D-alanine carboxypeptidase of E. coli or the growth of the bacteria.  相似文献   

11.
12.
Pyridoxal 5′ phosphate at concentrations < 0.5 mM inhibits polymerization of deoxynucleoside triphosphate catalysed by variety of DNA polymerases isolated from type C RNA tumor viruses, as well as E.coli, but doesnot affect the polymerase associated RNase H activity. Both phosphate and aldehyde groups of pyridoxal phosphate are essential for the inhibition which appears to be mediated through the reversible Schiff base.  相似文献   

13.
5-Azacytidine, when added to growing E.coli K12, causes a decrease in DNA methylation assayed invitro. This decrease is greater when E.coli DNA is used as substrate than when calf thymus DNA is used. The decrease in activity is not due to the inhibition of protein synthesis caused by this drug, since neither chloramphenicol nor rifampin causes a decrease in enzyme activity. The effect is specific for the DNA(cytosine-5)methylase; the methylation of adenine is not affected. The concentration of drug that inhibits the DNA methylase by 50% is the same concentration that inhibits cell growth by 50%.  相似文献   

14.
The activity of E. coli DNA polymerase I decreases on treatment with γ-rays, methylnitrosourea or dimethyl sulphate. In the case of the first two agents the decrease in activity is accompanied by a decrease in the accuracy of the enzyme in an in vitro assay. There is no detectable change in the ratio of DNA polymerase activity to 3′→5′ exonuclease activity on treatment.  相似文献   

15.
Excision of thymine dimers from specifically incised ultraviolet irradiated DNA by E. coli DNA polymerase I is stimulated by concurrent DNA synthesis. The 36,000 molecular-weight “small fragment” obtained by limited proteolysis of DNA polymerase I, which retains only the 5′ → 3′ exonuclease activity, also excises thymine dimers, but at one-tenth the rate of the intact enzyme. However, the rate of excision is increased by addition of the “large” 76,000-molecular weight fragment. With the further addition of the 4 deoxynucleoside triphosphates, permitting DNA synthesis to occur, excision approaches rates observed with the intact enzyme. The same result was obtained with a fragment of DNA polymerase I with 5′ → 3′ exonuclease activity that is present uniquely in polymerase I amber mutants.  相似文献   

16.
The conversion of both parental- and progeny-nascent open circular M13 RF DNA into covalently closed RF I is drastically reduced in an E. coli mutant deficient in the 5′ → 3′ exonuclease associated with DNA polymerase I. The nascent progeny RF DNA also contains a significant proportion of fragments of smaller than unit length.  相似文献   

17.
2,6-dibromothymoquinone (DBMIB) and other coenzyme Q analogs partially inhibit electron transport and the membrane-bound Mg++ stimulated ATPase of E. coli membranes. The inhibitions by DBMIB are fully reversed by coenzyme Q6, and other analogs show partial reversal by coenzyme Q6. Electron transport reactions inhibited are NADH and lactate oxidase, NADH menadione reductase, lactate phenazinemethosulfate reductase and duroquinol oxidase. The concentrations of DBMIB required are similar for electron transport and ATPase inhibition and inhibitions are all increased by uncouplers. Electron transport and ATPase are not inhibited in a DBMIB insensitive mutant. Soluble ATPase extracted from the membranes does not show DBMIB inhibition under either high or low Mg++ conditions. Lipophilic chelators show additional inhibition over DBMIB. It appears that coenzyme Q functions at three sites in E. coli electron transport where ATPase activity is controlled. Coenzyme Q deficient mutants also show decreased electron transport and ATPase activity which is restored by coenzyme Q.  相似文献   

18.
19.
The effect of depurination of polynucleotide templates on the fidelity of DNA synthesis in vitro has been determined. The fidelity of DNA synthesis with Escherichia coli DNA polymerase I, avian myeloblastosis virus DNA polymerase and human placenta DNA polymerase-β is decreased as a result of depurination of the poly[d(A-T)], poly[d(G-C)]and poly[d(A)]templates. The error rate with poly[d(A-T)]increased from 117,500 to 12100 using E. coli Pol I, and from 14100 to 11500 using the myeloblastosis virus DNA polymerase. Depurination of poly[d(A)]increased the error rate from 121,000 to 16500 using E. coli Pol I, and from 119,300 to 16100 using the DNA polymerase-β from human placenta. Depurination of poly[d(G-C)]resulted in an increase in the error rate with E. coli Pol I from 19200 to 12200, and with the virus DNA polymerase from 12400 to 11300. This misincorporation is shown to be directly proportional to the extent of depurination. Deletion experiments and alkaline sucrose gradient analyses suggest that the incorporation of complementary and non-complementary nucleotides is dependent on polymerization, and occurs in the same newly synthesized product. Kinetic studies and nearest-neighbor analyses indicate that the incorporation of non-complementary nucleotides occurs randomly as single-base substitutions. The nearest-neighbor studies also suggest that any of the four deoxynucleotides can be incorporated opposite apurinic sites. The number of each nucleotide incorporated relative to the number of apurinic sites was determined to be 1490 for dGTP, 1115 for dCTP, 12·5 for dATP and 11·7 for dTTP with both the poly[d(A-T)] and poly[d(A)] templates. The frequencies of misincorporation relative to the number of apurinic sites with the poly[d(G-C)]template were 1230 for dATP, 1120 for dTTP, 12·4 for dGTP and 11·8 for dCTP. Hydrolysis at the apurinic sites by alkali treatment reversed the effects of depurination on fidelity. The error rates with the depurinated templates were reduced to within 2% of those obtained prior to depurination, providing additional evidence that the misincorporation after depurination results from apurinic sites on the template. These results suggest a possible relationship between depurination of DNA and errors in DNA replication and/or repair.  相似文献   

20.
A minicell-producing strain of E.coli carrying an F′ factor, KLF10-1, forms minicells that contain plasmid but not chromosomal DNA. These minicells were found to synthesize two polypeptides corresponding precisely to the β and β′ subunits of RNA polymerase in SDS-polyacrylamide gel electrophoresis. In contrast, minicells obtained from an isogenic strain carrying F13-1 do not synthesize these proteins under similar conditions. These results indicate that the structural genes for the β′ as well as β subunits of the polymerase are located on the chromosomal segment (78 to 81 min on the standard genetic map of E.coli) carried by KLF10-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号