首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, [delta]pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all [delta]pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light.  相似文献   

2.
High-field pulsed Fourier-transform nuclear magnetic resonance spectroscopy (NMR) was used to quantify the adenylate levels of sea anemones (Aiptasia pulchella) with and without symbiotic dinoflagellates (Symbiodinium sp.). Animals were fed to repletion, then starved in darkness for up to six days before collection of in vivo NMR spectra. The host adenylate ratio of ATP: (ATP + ADP) declined significantly with increasing periods of starvation in both symbiotic and aposymbiotic hosts (P less than 0.05). However, the decline in the animal adenylate ratio was significantly more rapid in animals bearing symbiotic algae (P less than 0.05). This suggests that symbiotic algae in darkness cause more rapid depletion of host energy reserves, possibly by drawing on host pools of organic substrates. In vivo NMR spectroscopy was also used to evaluate the effect on A. pulchella of photosynthesis by zooxanthellae. Symbiotic anemones were fed to repletion, then starved under high irradiance (300 to 320 mu Ein m-2 s-1) or low irradiance (70 to 80 mu Ein m-2 s-1) conditions for up to five days. The host adenylate ratio declined significantly (P less than 0.01) with starvation under both treatments, but no significant difference was detected between treatments (P greater than 0.35). Blotted wet weight of anemones under high and low irradiance declined by 50% over eight days of starvation, but there was no significant difference in the rate of weight loss by anemones in the two treatments. There results suggest that translocation of photosynthate from symbiotic zooxanthellae does not significantly affect host adenylate ratio or have a sparing effect on host biomass during starvation in this symbiotic sea anemone.  相似文献   

3.
Maxwell DP  Falk S  Huner N 《Plant physiology》1995,107(3):687-694
The basis of the increased resistance to photoinhibition upon growth at low temperature was investigated. Photosystem II (PSII) excitation pressure was estimated in vivo as 1 - qp (photochemical quenching). We established that Chlorella vulgaris exposed to either 5[deg]C/150 [mu]mol m-2 s-1 or 27[deg]C/2200 [mu]mol m-2 s-1 experienced a high PSII excitation pressure of 0.70 to 0.75. In contrast, Chlorella exposed to either 27[deg]C/150 [mu]mol m-2 s-1 or 5[deg]C/20 [mu]mol m-2 s-1 experienced a low PSII excitation pressure of 0.10 to 0.20. Chlorella grown under either regime at high PSII excitation pressure exhibited: (a) 3-fold higher light-saturated rates of O2 evolution; (b) the complete conversion of PSII[alpha] centers to PSII[beta] centers; (c) a 3-fold lower epoxidation state of the xanthophyll cycle intermediates; (d) a 2.4-fold higher ratio of chlorophyll a/b; and (e) a lower abundance of light-harvesting polypeptides than Chlorella grown at either regime at low PSII excitation pressure. In addition, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 exhibited resistance to photoinhibition comparable to that of cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 and were 3- to 4-fold more resistant to photoinhibition than cells grown at either regime at low excitation pressure. We conclude that increased resistance to photoinhibition upon growth at low temperature reflects photosynthetic adjustment to high excitation pressure, which results in an increased capacity for nonradiative dissipation of excess light through zeaxanthin coupled with a lower probability of light absorption due to reduced chlorophyll per cell and decreased abundance of light-harvesting polypeptides.  相似文献   

4.
K K Niyogi  A R Grossman    O Bjrkman 《The Plant cell》1998,10(7):1121-1134
A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy.  相似文献   

5.
Dithiothreitol, which completely inhibits the de-epoxidation of violaxanthin to zeaxanthin, was used to obtain evidence for a causal relationship between zeaxanthin and the dissipation of excess excitation energy in the photochemical apparatus in Spinicia oleracea L. In both leaves and chloroplasts, inhibition of zeaxanthin formation by dithiothreitol was accompanied by inhibition of a component of nonphotochemical fluorescence quenching. This component was characterized by a quenching of instantaneous fluorescence (Fo) and a linear relationship between the calculated rate constant for radiationless energy dissipation in the antenna chlorophyll and the zeaxanthin content. In leaves, this zeaxanthin-associated quenching, which relaxed within a few minutes upon darkening, was the major component of nonphotochemical fluorescence quenching determined in the light, i.e. it represented the `high-energy-state' quenching. In isolated chloroplasts, the zeaxanthin-associated quenching was a smaller component of total nonphotochemical quenching and there was a second, rapidly reversible high-energy-state component of fluorescence quenching which occurred in the absence of zeaxanthin and was not accompanied by Fo quenching. Leaves, but not chloroplasts, were capable of maintaining the electron acceptor, Q, of photosystem II in a low reduction state up to high degrees of excessive light and thus high degrees of nonphotochemical fluorescence quenching. When ascorbate, which serves as the reductant for violaxanthin de-epoxidation, was added to chloroplast suspensions, zeaxanthin formation at low photon flux densities was stimulated and the relationship between nonphotochemical fluorescence quenching and the reduction state in chloroplasts then became more similar to that found in leaves. We conclude that the inhibition of zeaxanthin-associated fluorescence quenching by dithiothreitol provides further evidence that there exists a close relationship between zeaxanthin and potentially photoprotective dissipation of excess excitation energy in the antenna chlorophyll.  相似文献   

6.
7.
When leaves of a mangrove, Rhizophora mangle, were exposed to an excess of light at chilling temperatures, synthesis of zeaxanthin through violaxanthin de-epoxidation as well as nonphotochemical fluorescence quenching were markedly reduced. The results suggest a protective role of energy dissipation against the adverse effects of high light and chilling temperatures: leaves of R. mangle that had been preilluminated in 2% O2, 0% CO2 at low photon flux density and showed a high level of zeaxanthin, and leaves that had been kept in the dark and contained no zeaxanthin, were both exposed to high light and chilling temperatures (5°C leaf temperature) in air and then held under control conditions in low light in air at 25°C. Measurements of chlorophyll a fluorescence at room temperature showed that the photochemical efficiency of PSII and the yield of maximum fluorescence of the preilluminated leaf recovered completely within 1 to 3 hours under the control conditions. In contrast, the fluorescence responses of the predarkened leaf in high light at 5°C did not recover at all. During a dark/light transient in 2% O2, 0% CO2 in low light at 5°C, nonphotochemical fluorescence quenching increased linearly with an increase in the zeaxanthin content in leaves of R. mangle. In soybean (Glycine max) leaves, which contained a background level of zeaxanthin in the dark, a similar treatment with excess light induced a level of nonphotochemical fluorescence quenching that was not paralleled by an increase in the zeaxanthin content.  相似文献   

8.
Špunda  V.  Kalina  J.  Marek  M.V.  Nauš  J. 《Photosynthetica》1997,33(1):91-102
Based on the analysis of fluorescence quenching, the nonphotochemical dissipative processes were investigated in Norway spruce needles during acclimation to winter and spring conditions. The maximum nonphotochemical fluorescence quenching (qNmax) was reached at lower irradiances in winter (up to 310 μmol m-2 s-1) than in spring (about 1130 μmol m-2 s-1), but its values were nearly the same (qNmax = 0.91±0.01) during both winter and spring measurements. In early winter the pronounced initial fluorescence quenching (q0) suggested that nonradiative energy dissipation in the antennae complexes dominated. Significantly lower q0 (by 40-60 % compared to winter needles) during acclimation of needles to spring conditions supported a significant contribution of quenching in the reaction centres. These findings support the hypothesis that the antennae systems and reaction centres cooperate in the protective dissipation of excess excitation energy. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

9.
Kim JH  Nemson JA  Melis A 《Plant physiology》1993,103(1):181-189
Mechanistic aspects of the photosystem II (PSII) damage and repair cycle in chloroplasts were investigated. The D1/32-kD reaction center protein of PSII (known as the psbA chloroplast gene product) undergoes a frequent light-dependent damage and turnover in the thylakoid membrane. In the model organism Dunaliella salina (green alga), growth under a limiting intensity of illumination (100 [mu]mol of photons m-2 s-1; low light) entails damage, degradation, and replacement of D1 every about 7 h. Growth under irradiance-stress conditions (2000 [mu]mol of photons m-2 s-1; high light) entails damage to and replacement of D1 about every 20 min. Thus, the rate of damage and repair of PSII appears to be proportional to the light intensity during plant growth. Low-light-grown cells do not possess the capacity for high rates of repair. Upon transfer of low-light-grown cells to high-light conditions, accelerated damage to reaction center proteins is followed by PSII disassembly and aggregation of neighboring reaction center complexes into an insoluble dimer form. The accumulation of inactive PSII centers that still contain the D1 protein suggests that the rate of D1 degradation is the rate-limiting step in the PSII repair cycle. Under irradiance-stress conditions, chloroplasts gradually acquire a greater capacity for repair. The induction of this phenomenon occurs with a half-time of about 24 h.  相似文献   

10.
四种重楼属植物光合作用特征   总被引:1,自引:0,他引:1  
Species of Paris (Trilliaceae) have often been used as medicinal plants. Because of excessive exploitation,in this regard the wild resource of Paris is almost exhausted. Some species of Paris were transplanted for use in photosynthesis research and for conservation purposes. In the present study, light and CO2 photosynthetic response curves were investigated in four Paris taxa: P.polyphylla var. yunnanensis and var. alba, P.mairei, and P.marmorata. Our results showed that P.marmorata had the highest maximum photosynthetic rate (Pmax; 8.6μmol·m-2·s-1), light saturation point (LSP; 827μmol·m-2·s-1), maximum electron transport rate (Jmax; 39.9mol·m-2·s-1), a relatively high maximum carboxylation rate (Vcmax; 28.9μmol·m-2·s-1) and carbon dioxide saturation point (Cisat; 726μmol·mol-1), but a lower light compensation point (LCP; 6.23μmol·m-2·s-1) and the lowest carbon dioxide compensation point (Г*; 20.7μmol·mol-1). This suggests that P.marmorata is well adapted to light and CO2; however it has a low ability to acclimate to environmental stress as indicated by low water use efficiency (WUE) in high light conditions. P.polyphylla var. yunnanensis had the highest light compensation point (LCP; 10.1μmol·m-2·s-1), carbon dioxide compensation point (Г*; 35.3μmol·mol-1), carbon dioxide saturation point (Cisat; 727μmol·mol-1), relatively high maximum photosynthetic rate (Pmax; 7.5μmol·m-2·s-1) and light saturation point (LSP; 728μmol·m-2·s-1), maximum light saturated electron transfer rate (Jmax; 37.7μmol·m-2·s-1), suggesting that it is suitable for conditions of higher light and CO2 concentration. This taxon can adapt to adverse conditions, as suggested by high WUE under increased CO2 concentration. In contrast, P.polyphylla var. alba exhibited a relatively lower apparent quantum yield (AQY; 0.037μmol·mol-1) and poorer growth performance than the other taxa. We suggest from our results that different light and water conditions are suitable for the growth of the different taxa. Photosynthesis assimilation efficiency and production can be increased by raising humidity for P.polyphylla var. yunnanensis and P.marmorata. To protect plants of P.polyphylla var. alba from strong sunshine, they should be shaded from March to mid June.  相似文献   

11.
Talbott LD  Zeiger E 《Plant physiology》1993,102(4):1163-1169
Changes in neutral sugar and organic acid content of guard cells were quantitated by high-performance liquid chromatography during stomatal opening in different light qualities. Sonicated Vicia faba epidermal peels were irradiated with 10 [mu]mol m-2 s-1 of blue light, a fluence rate insufficient for the activation of guard cell photosynthesis, or 125 [mu]mol m-2 s-1 of red light, in the presence of 1 mM KCl, 0.1 mM CaCl2. The low-fluence-rate blue light stimulated an average net stomatal opening of 4.7 [mu]m in 2 h, whereas the saturating fluence rate of red light stimulated an average net opening of 3.8 [mu]m in 2 h. Under blue light, the malate content of guard cells increased to 173% of the initial level during the first 30 min of opening and declined as opening continued. Sucrose levels continuously rose throughout the blue light-stimulated opening, reaching 215% of the initial level after 2 h. The starch hydrolysis products maltose and maltotriose remained elevated at all times. Under red light, guard cells showed very little increase in organic acid or maltose levels, whereas sucrose levels increased to 208% of the initial level after 2 h. Total measured organic metabolite concentrations were correlated with stomatal apertures in all cases except where substantial malate increases occurred. These results support the hypothesis that light quality modulates alternative mechanisms of osmotic accumulation in guard cells, including potassium uptake, photosynthetic sugar production, and starch breakdown.  相似文献   

12.
A light-sensitive and chlorophyll (Chl)-deficient mutant of the green alga Dunaliella salina (dcd1) showed an amplified response to irradiance stress compared to the wild-type. The mutant was yellow-green under low light (100 micromol photons m(-2) s(-1)) and yellow under high irradiance (2000 micromol photons m(-2) s(-1)). The mutant had lower levels of Chl, lower levels of light harvesting complex II, and a smaller Chl antenna size. The mutant contained proportionately greater amounts of photodamaged photosystem (PS) II reaction centers in its thylakoid membranes, suggesting a greater susceptibility to photoinhibition. This phenotype was more pronounced under high than low irradiance. The Cbr protein, known to accumulate when D. salina is exposed to irradiance stress, was pronouncedly expressed in the mutant even under low irradiance. This positively correlated with a higher zeaxanthin content in the mutant. Cbr protein accumulation, xanthophyll cycle de-epoxidation state, and fraction of photodamaged PSII reaction centers in the thylakoid membrane showed a linear dependence on the chloroplast 'photoinhibition index', suggesting a cause-and-effect relationship between photoinhibition, Cbr protein accumulation and xanthophyll cycle de-epoxidation state. These results raised the possibility of zeaxanthin and Cbr involvement in the PSII repair process through photoprotection of the partially disassembled, and presumably vulnerable, PSII core complexes from potentially irreversible photooxidative bleaching.  相似文献   

13.
Sensitivity to photoinhibition under high light stress (2000 [mu]mol photons m-2 s-1 for 2 h in air) and recovery from this stress were examined in leaves of control, uninfected tobacco (Nicotiana tabacum cv Xanthi) leaves and in leaves in tobacco plants infected with tobacco mosaic virus (TMV) when grown under low light (150-200 [mu]mol photons m-2 s-1) or high light (1200 [mu]mol photons m-2 s-1) with high (8.0 mM) or low (0.5 mM) nitrate supply. Photoinhibition was monitored using the dark-adapted fluorescence parameters variable fluorescence/maximum fluorescence, an indicator of photosynthetic efficiency that correlated well with the quantum yield of photosynthetic oxygen evolution, and initial fluorescence, potentially an indicator of photoinhibitory damage. Susceptibility to photoinhibition was greater in low light- and low nitrogen-grown control plants than in high light- or high nitrogen-treated plants. Compared with uninfected controls, infection with the masked strain PV42 increased susceptibility to photoinhibition only in plants grown under low light/low nitrogen conditions. In expanding leaves, infection with severe strain TMV PV230 markedly accelerated photoinhibition under these conditions and under high light/low nitrogen conditions, even before visible symptoms were evident. High nitrogen levels during growth protected against this accelerated photoinhibitory response to virus infection during light stress and generally promoted recovery, at least prior to symptom development. As symptoms developed, the yellow regions provided evidence for chronic photoinhibitory damage, prior to and during the stress treatment, irrespective of growth conditions. Green regions of leaves showing visible symptoms were generally indistinguishable from control, uninfected plants during photoinhibitory stress and recovery. In developed leaves that remained free of visible symptoms during the experiments, in spite of the accumulation of about the same amounts of virus protein (S. Balachandran, C.B. Osmond, A. Makino [1994] Plant Physiol 104: 1043-1050) infection led to an acceleration of photoinhibition during stress treatments, especially in low light/low nitrogen treatments, in which chronic photoinhibitory damage was evident. These studies suggest a role for photoinhibitory damage in the acceleration of visible symptom development following TMV PV230 infection of expanding leaves, as well as in acceleration of senescence in developed leaves without visible symptoms.  相似文献   

14.
The xanthophyll cycle and NPQ in diverse desert and aquatic green algae   总被引:1,自引:0,他引:1  
It has long been suspected that photoprotective mechanisms in green algae are similar to those in seed plants. However, exceptions have recently surfaced among aquatic and marine green algae in several taxonomic classes. Green algae are highly diverse genetically, falling into 13 named classes, and they are diverse ecologically, with many lineages including members from freshwater, marine, and terrestrial habitats. Genetically similar species living in dramatically different environments are potentially a rich source of information about variations in photoprotective function. Using aquatic and desert-derived species from three classes of green algae, we examined the induction of photoprotection under high light, exploring the relationship between nonphotochemical quenching and the xanthophyll cycle. In liquid culture, behavior of aquatic Entransia fimbriata (Klebsormidiophyceae) generally matched patterns observed in seed plants. Nonphotochemical quenching was lowest after overnight dark adaptation, increased with light intensity, and the extent of nonphotochemical quenching correlated with the extent of deepoxidation of xanthophyll cycle pigments. In contrast, overnight dark adaptation did not minimize nonphotochemical quenching in the other species studied: desert Klebsormidium sp. (Klebsormidiophyceae), desert and aquatic Cylindrocystis sp. (Zygnematophyceae), and desert Stichococcus sp. (Trebouxiophyceae). Instead, exposure to low light reduced nonphotochemical quenching below dark-adapted levels. De-epoxidation of xanthophyll cycle pigments paralleled light-induced changes in nonphotochemical quenching for species within Klebsormidiophyceae and Trebouxiophyceae, but not Zygnematophyceae. Inhibition of violaxanthin–zeaxanthin conversion by dithiothreitol reduced high-light-associated nonphotochemical quenching in all species (Zygnematophyceae the least), indicating that zeaxanthin can contribute to photoprotection as in seed plants but to different extents depending on taxon or lineage.  相似文献   

15.
Banet G  Pick U  Zamir A 《Planta》2000,210(6):947-955
 Like higher plants, unicellular green algae of the genus Dunaliella respond to light stress by enhanced de-epoxidation of violaxanthin and accumulation of Cbr, a protein homologous to early light-inducible proteins (Elips) in plants. Earlier studies indicated that Cbr was associated with the light-harvesting complex of photosystem II (LHCII) and suggested it acted as a zeaxanthin-binding protein and fulfilled a photo-protective function (Levy et al. 1993, J. Biol. Chem. 268: 20892–20896). To characterize the protein-pigment subcomplexes containing Cbr in greater detail than attained so far, thylakoid membranes from Dunaliella salina grown in high light or normal light were solubilized with dodecyl maltoside and fractionated by isoelectric-focusing. Analysis of the resolved LHCII subcomplexes indicated preferred associations among the four LHCIIb polypeptides and between them and Cbr: subcomplexes including Cbr contained one or two of the more acidic of the four LHCIIb polypeptides as well as large amounts of lutein and zeaxanthin relative to chlorophyll a/b. After sucrose gradient centrifugation, Cbr free of LHCIIb polypeptides was detected together with released pigments; this Cbr possibly originated in subcomplexes dissociated in the course of the analysis. These results agree with the conclusion that Cbr is part of the network of LHCIIb protein-pigment complexes and suggest that the role played by Cbr involves the organization and/or stabilization of assemblies highly enriched in zeaxanthin and lutein. Such assemblies may function to protect PSII from photodamage due to overexcitation. Received: 6 August 1999 / Accepted: 23 November 1999  相似文献   

16.
Two Atlantic (SARG and NATL1) strains and one Mediterranean (MED) strain of Prochlorococcus sp., a recently discovered marine, free-living prochlorophyte, were grown over a range of "white" irradiances (lg) and under low blue light to examine their photoacclimation capacity. All three strains contained divinyl (DV) chlorophylls (Chl) a and b, both distinguishable from "normal" Chls by their red-shifted blue absorption maximum, a Chl c-like pigment at low concentration, zeaxanthin, and [alpha]-carotene. The presence of two phaeophytin b peaks in acidified extracts from both Atlantic strains grown at high lg suggests that these strains also had a normal Chl b-like pigment. In these strains, the total Chl b to DV-Chl a molar ratio decreased from about 1 at 7.5 [mu]mol quanta m-2 s-1 to 0.4 to 0.5 at 133 [mu]mol quanta m-2 s-1. In contrast, the MED strain always had a low DV-Chl b to DV-Chl a molar ratio, ranging between 0.13 at low lg and 0.08 at high lg. The discrepancies between the Atlantic and MED strains could result from differences either in the number of light-harvesting complexes (LHC) II per photosystem II or in the Chl b-binding capacity of the apoproteins constituting LHC II. Photosynthesis was saturated at approximately 5 fg C(fg Chl)-1 h-1 or 6 fg C cell-1 h-1, and growth was saturated at approximately 0.45 d-1 for both MED and SARG strains at 18[deg]C, but saturating irradiances differed between strains. Atlantic strains exhibited increased light-saturated rates and quantum yield for carbon fixation under blue light.  相似文献   

17.
Assessments of nutrient‐limitation in microalgae using chl a fluorescence have revealed that nitrogen and phosphorus depletion can be detected as a change in chl a fluorescence signal when nutrient‐starved algae are resupplied with the limiting nutrient. This photokinetic phenomenon is known as a nutrient‐induced fluorescence transient, or NIFT. Cultures of the unicellular marine chlorophyte Dunaliella tertiolecta Butcher were grown under phosphate starvation to investigate the photophysiological mechanism behind the NIFT response. A combination of low temperature (77 K) fluorescence, photosynthetic inhibitors, and nonphotochemical quenching analyses were used to determine that the NIFT response is associated with changes in energy distribution between PSI and PSII and light‐stress‐induced nonphotochemical quenching (NPQ). Previous studies point to state transitions as the likely mechanism behind the NIFT response; however, our results show that state transitions are not solely responsible for this phenomenon. This study shows that an interaction of at least two physiological processes is involved in the rapid quenching of chl a fluorescence observed in P‐starved D. tertiolecta: (1) state transitions to provide the nutrient‐deficient cell with metabolic energy for inorganic phosphate (Pi)‐uptake and (2) energy‐dependent quenching to allow the nutrient‐stressed cell to avoid photodamage from excess light energy during nutrient uptake.  相似文献   

18.
We demonstrate that photosynthetic adjustment at the level of the light-harvesting complex associated with photosystem II (LCHII) in Dunaliella salina is a response to changes in the redox state of intersystem electron transport as estimated by photosystem II (PSII) excitation pressure. To elucidate the molecular basis of this phenomenon, LHCII apoprotein accumulation and cab mRNA abundance were examined. Growth regimes that induced low, but equivalent, excitation pressures (either 13[deg]C/20 [mu]mol m-2 s-1 or 30[deg]C/150 ([mu]mol m-2 s-1) resulted in increased LHCII apoprotein and cab mRNA accumulation relative to algal cultures grown under high excitation pressures (either 13[deg]C/150 [mu]mol m-2 s-1 or 30[deg]C/2500 [mu]mol m-2 s-1). Thermodynamic relaxation of high excitation pressures, accomplished by shifting cultures from a 13 to a 30[deg]C growth regime at constant irradiance for 12 h, resulted in a 6- and 8-fold increase in LHCII apoprotein and cab mRNA abundance, respectively. Similarly, photodynamic relaxation of high excitation pressure, accomplished by a shift from a light to a dark growth regime at constant temperature, resulted in a 2.4- to 4-fold increase in LHCII apoprotein and cab mRNA levels, respectively. We conclude that photosynthetic adjustment to temperature mimics adjustment to high irradiance through a common redox sensing/signaling mechanism. Both temperature and light modulate the redox state of the first, stable quinone electron acceptor of PSII, which reflects the redox poise of intersystem electron transport. Changes in redox poise signal the nucleus to regulate cab mRNA abundance, which, in turn, determines the accumulation of light-harvesting apoprotein. This redox mechanism may represent a general acclimation mechanism for photosynthetic adjustment to environmental stimuli.  相似文献   

19.
We have identified two rapidly relaxing components of non-photochemical fluorescence quenching which suggests that dissipative processes occur in two different sites in the photochemical system of leaves. Under a variety of treatment conditions involving different leaf temperatures, photon flux densities (PFD), exposure times, and in the presence of 5% CO2 or 2% O2, no CO2, the components of nonphotochemical fluorescence quenching were characterized with respect to their sensitivity to dithiothreitol (DTT, which completely inhibits zeaxanthin formation), the effect on instantaneous fluorescence, and the rapidity of relaxation upon darkening. Under most circumstances the DTT-sensitive component (associated with a quenching of instantaneous fluorescence and correlated with zeaxanthin) represented the majority of the rapidly relaxing portion of fluorescence quenching. A DTT-insensitive (zeaxanthin-independent) component, which also relaxed rapidly upon darkening but was not associated with a quenching of instantaneous fluorescence, became proportionally greater in an atmosphere of 2% O2 and no CO2, at elevated leaf temperatures, and to some degree during the induction of photosynthesis (1 minute after the onset of illumination). A third component which was also DTT-insensitive and was sustained upon darkening, was largely suppressed in 2% O2, O% CO2. We conclude that, under conditions favorable for photosynthesis, energy dissipation occurred mainly in the chlorophyll antennae whereas, under conditions less favorable for photosynthesis, a second dissipation process, probably in or around the reaction center of photosystem II, also developed. Furthermore, evidence is presented that the zeaxanthin-associated dissipation process prevents sustained inactivation of photochemistry by excessive light.  相似文献   

20.
Sunflower (Helianthus annuus L.), cotton (Gossypium hirsutum L.), tobacco (Nicotiana tabacum L.), sorghum (Sorghum bicolor Moench.), amaranth (Amaranthus cruentus L.), and cytochrome b6f complex-deficient transgenic tobacco leaves were used to test the response of plants exposed to differnt light intensities and CO2 concentrations before and after photoinhibition at 4000 [mu]mol photons m-2 s-1 and to thermoinhibition up to 45[deg]C. Quantum yields of photochemical and nonphotochemical excitation quenching (YP and YN) and the corresponding relative rate constants for excitation capture from the antenna-primary radical pair equilibrium system (k[prime]P and k[prime]N) were calculated from measured fluorescence parameters. The above treatments resulted in decreases in YP and K[prime]P and in approximately complementary increases in YN and K[prime]N under normal and inhibitory conditions. The results were reproduced by a mathematical model of electron/proton transport and O2 evolution/CO2 assimilation in photosynthesis based on budget equations for the intermediates of photosynthesis. Quantitative differences between model predictions and experiments are explainable, assuming that electron transport is organized into domains that contain relatively complete electron and proton transport chains (e.g. thylakoids). With the complementation that occurs between the photochemical and nonphotochemical excitation quenching, the regulatory system can constantly maintain the shortest lifetime of excitation necessary to avoid the formation of chlorophyll triplet states and singlet oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号