首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study we determined body weight-specific fetal (umbilical) glucose uptake (UGU), utilization (GUR), and production rates (GPR) and insulin action in intrauterine growth-restricted (IUGR) fetal sheep. During basal conditions, UGU from the placenta was 33% lower in IUGR fetuses, but GUR was not different between IUGR and control fetuses. The difference between glucose utilization and UGU rates in the IUGR fetuses demonstrated the presence and rate of fetal GPR (41% of GUR). The mRNA concentrations of the gluconeogenic enzymes glucose-6-phophatase and PEPCK were higher in the livers of IUGR fetuses, perhaps in response to CREB activation, as phosphorylated CREB/total CREB was increased 4.2-fold. A hyperglycemic clamp resulted in similar rates of glucose uptake and utilization in IUGR and control fetuses. The nearly identical GURs in IUGR and control fetuses at both basal and high glucose concentrations occurred at mean plasma insulin concentrations in the IUGR fetuses that were approximately 70% lower than controls, indicating increased insulin sensitivity. Furthermore, under basal conditions, hepatic glycogen content was similar, skeletal muscle glycogen was increased 2.2-fold, the fraction of fetal GUR that was oxidized was 32% lower, and GLUT1 and GLUT4 concentrations in liver and skeletal muscle were the same in IUGR fetuses compared with controls. These results indicate that insulin-responsive fetal tissues (liver and skeletal muscle) adapt to the hypoglycemic-hypoinsulinemic IUGR environment with mechanisms that promote glucose utilization, particularly for glucose storage, including increased insulin action, glucose production, shunting of glucose utilization to glycogen production, and maintenance of glucose transporter concentrations.  相似文献   

2.
To test the effects of acute fetal hyperinsulinemia on the pattern and time course of insulin signaling in ovine fetal skeletal muscle, we measured selected signal transduction proteins in the mitogenic, protein synthetic, and metabolic pathways in the skeletal muscle of normally growing fetal sheep in utero. In experiment 1, 4-h hyperinsulinemic-euglycemic clamps were conducted in anesthetized twin fetuses to produce selective fetal hyperinsulinemia-euglycemia in one twin and euinsulinemia-euglycemia in the other. Serial skeletal muscle biopsies were taken from each fetus during the clamp and assayed by Western blot for selected insulin signal transduction proteins. Tyrosine phosphorylation of the insulin receptor, insulin receptor substrate-1, and the p85 subunit of phosphatidylinositol 3-kinase doubled at 30 min and gradually returned to control values by 240 min. Phosphorylation of extracellular signal-regulated kinase 1,2 was increased fivefold through 120 min of insulin infusion and decreased to control concentration by 240 min. Protein kinase B phosphorylation doubled at 30 min and remained elevated throughout the study. Phosphorylation of p70 S6K increased fourfold at 30, 60, and 120 min. In the second experiment, a separate group of nonanesthetized singleton fetuses was clamped to intermediate and high hyperinsulinemic-euglycemic conditions for 1 h. GLUT4 increased fourfold in the plasma membrane at 1 h, and hindlimb glucose uptake increased significantly at the higher insulin concentration. These data demonstrate that an acute increase in fetal plasma insulin concentration stimulates a unique pattern of insulin signal transduction proteins in intact skeletal muscle, thereby increasing pathways for mRNA translation, glucose transport, and cell growth.  相似文献   

3.
Folate deficiency in pregnancy is associated with neural tube defects, restricted fetal growth and fetal programming of diseases later in life. Fetal folate availability is dependent on maternal folate levels and placental folate transport capacity, mediated by two key transporters, Folate Receptor-α and Reduced Folate Carrier (RFC). We tested the hypothesis that intrauterine growth restriction (IUGR) is associated with decreased folate transporter expression and activity in isolated syncytiotrophoblast microvillous plasma membranes (MVM). Women with pregnancies complicated by IUGR (birth weight <3rd percentile, mean birth weight 1804±110 g, gestational age 35.7±0.61 weeks, n=25) and women delivering an appropriately-for gestational age infant (control group, birth weight 25th–75th centile, mean birth weight 2493±216 g, gestational age 33.9±0.95 weeks, n=19) were recruited and placentas were collected at delivery. MVM was isolated and folate transporter protein expression was measured using Western blot and transporter activity was determined using radiolabelled methyltetrahydrofolic acid and rapid filtration. Whereas the expression of FR-α was unaffected, MVM RFC protein expression was significantly decreased in the IUGR group (−34%, P<.05). IUGR MVM had a significantly lower folate uptake compared to the control group (−38%, P<.05). In conclusion, placental folate transport capacity is decreased in IUGR, which may contribute to the restricted fetal growth and intrauterine programming of childhood and adult disease. These findings suggest that continuation of folate supplementation in the second and third trimester is of particular importance in pregnancies complicated by IUGR.  相似文献   

4.
Using a mid- to late-gestation ovine model of intrauterine growth restriction (IUGR), we examined uteroplacental blood flow and fetal growth during melatonin supplementation as a 2 × 2 factorial design. At day 50 of gestation, 32 ewes were supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) and were allocated to receive 100% [adequate; (ADQ)] or 60% [restricted (RES)] of nutrient requirements until day 130 of gestation. Umbilical artery blood flow was increased from day 60 to day 110 of gestation in MEL vs. CON dams, while umbilical artery blood flow was decreased from day 80 to day 110 of gestation in RES vs. ADQ dams. At day 130 of gestation, uteroplacental hemodynamics, measured under general anesthesia, and fetal growth were evaluated. Uterine artery blood flow was decreased in RES vs. ADQ dams, while melatonin supplementation did not affect uterine artery blood flow. Total placentome weight and placentome number were not different between treatment groups. Fetal weight was decreased by nutrient restriction. Abdominal girth and ponderal index were increased in fetuses from MEL-ADQ dams vs. all other groups. Fetal biparietal distance was decreased in CON-RES vs. CON-ADQ dams, while melatonin supplementation rescued fetal biparietal distance. Fetal kidney length and width were increased by maternal melatonin treatment. Fetal cardiomyocyte area was altered by both maternal melatonin treatment and nutritional plane. In summary, melatonin may negate the consequences of IUGR during specific abnormalities in umbilical blood flow as long as sufficient uterine blood perfusion is maintained during pregnancy.  相似文献   

5.
Developmental changes of amino acids in ovine fetal fluids   总被引:3,自引:0,他引:3  
We recently reported an unusual abundance of arginine (4-6 mM) in porcine allantoic fluid during early gestation. However, it is not known whether such high concentrations of arginine are unique for porcine allantoic fluid or whether they represent an important physiological phenomenon for mammals. The present study was conducted to test the hypothesis that arginine is also the most abundant amino acid in ovine allantoic fluid. Allantoic and amniotic fluids, as well as fetal and maternal plasma samples, were obtained from ewes between Days 30 and 140 of gestation. Glycine was the most abundant amino acid in maternal uterine arterial plasma, representing approximately 25% of total alpha-amino acids. Alanine, glutamine, glycine, plus serine contributed approximately 50% of total alpha-amino acids in fetal plasma. Fetal:maternal plasma ratios for amino acids varied greatly, being less than 1 for glutamate during late gestation, 1.5-3 for most amino acids throughout gestation, and greater than 10 for serine during late gestation. Marked changes were observed in amino acid concentrations in amniotic and allantoic fluids associated with conceptus development. Concentrations of alanine, citrulline, and glutamine in allantoic fluid increased by 20-, 34-, and 18-fold, respectively, between Days 30 and 60 of gestation and were 24.7, 9.7, and 23.5 mM, respectively, on Day 60 of gestation (compared with 0.8 mM arginine). Remarkably, alanine, citrulline, plus glutamine accounted for approximately 80% of total alpha-amino acids in allantoic fluid during early gestation. Serine (16.5 mM) contributed approximately 60% of total alpha-amino acids in allantoic fluid on Day 140 of gestation. These novel findings of the unusual abundance of traditionally classified nonessential amino acids in allantoic fluid raise important questions regarding their roles in ovine conceptus development.  相似文献   

6.
Intrauterine growth restriction (IUGR) is a risk factor for cardiovascular disease in later life. Early structural and functional changes in the cardiovascular system after IUGR may contribute to its pathogenesis. We tested the hypothesis that IUGR leads to primary myocardial and vascular alterations before the onset of hypertension. A rat IUGR model of maternal protein restriction during gestation was used. Dams were fed low protein (LP; casein 8.4%) or isocaloric normal protein diet (NP; casein 17.2%). The offspring was reduced to six males per litter. Immunohistochemical and real-time PCR analyses were performed in myocardial and vascular tissue of neonates and animals at day 70 of life. In the aortas of newborn IUGR rats expression of connective tissue growth factor (CTGF) was induced 3.2-fold. At day 70 of life, the expression of collagen I was increased 5.6-fold in aortas of IUGR rats. In the hearts of neonate IUGR rats, cell proliferation was more prominent compared to controls. At day 70 the expression of osteopontin was induced 7.2-fold. A 3- to 7-fold increase in the expression of the profibrotic cytokines TGF-β and CTGF as well as of microfibrillar matrix molecules was observed. The myocardial expression and deposition of collagens was more prominent in IUGR animals compared to controls at day 70. In the low-protein diet model, IUGR leads to changes in the expression patterns of profibrotic genes and discrete structural abnormalities of vessels and hearts in adolescence, but, with the exception of CTGF, not as early as at the time of birth. Invasive and non-invasive blood pressure measurements confirmed that IUGR rats were normotensive at the time point investigated and that the changes observed occurred independently of an increased blood pressure. Hence, altered matrix composition of the vascular wall and the myocardium may predispose IUGR animals to cardiovascular disease later in life.  相似文献   

7.
We measured net fetal glucose uptake rate from the placenta, shown previously to be equal to total fetal glucose utilization rate (GUR(f)) and proportional to fetal hindlimb skeletal muscle glucose utilization, under normal conditions and after 1, 2.5, and 24 h of selective hyperglycemia increasing G or selective hyperinsulinemia increasing I. We simultaneously measured the amount of Glut 1 and Glut 4 glucose transporter proteins in fetal sheep skeletal muscle. With increasing G , GUR(f) was increased approximately 40% at 1 and 2.5 h but returned to the control rate by 24 h. This transient increasing G -specific increasing GUR(f) was associated with increased plasma membrane-associated Glut 1 (4-fold) and intracellular Glut 4 (3-fold) protein beginning at 1 h. With increasing I, GUR(f) was increased approximately 70% at 1, 2.5, and 24 h. This more sustained increasing I-specific increasing GUR(f) was associated with a significant increase in Glut 4 protein (2-fold) at 2.5 h but no change in Glut 1 protein. These results show that increasing G and increasing I have independent effects on the amount of Glut 1 and Glut 4 glucose transporter proteins in ovine fetal skeletal muscle. These effects are time dependent and isoform specific and may contribute to increased glucose utilization in fetal skeletal muscle. The lack of a sustained temporal correlation between the increase in transporter proteins and glucose utilization rates indicates that subcellular localization and activity of a transporter or tissues other than the skeletal muscle contribute to net GUR(f).  相似文献   

8.
9.
Mechanisms that regulate endothelin (ET) in the perinatal lung are complex and poorly understood, especially with regard to the role of ET before and after birth. We hypothesized that the ET system is developmentally regulated and that the balance of ET(A) and ET(B) receptor activity favors vasoconstriction. To test this hypothesis, we performed a series of molecular and physiological studies in the fetal lamb, newborn lamb, and adult sheep. Lung preproET-1 mRNA levels, tissue ET peptide levels, and cellular localization of ET-1 expression were determined by Northern blot analysis, peptide assay, and immunohistochemistry in distal lung tissue from fetal lambs between 70 and 140 days (term = 145 days), newborn lambs, and ewes. Lung mRNA expression for the ET(A) and ET(B) receptors was also measured at these ages. We found that preproET-1 mRNA expression increased from 113 to 130 days gestation. Whole lung ET protein content was highest at 130 days gestation but decreased before birth in the fetal lamb lung. Immunolocalization of ET-1 protein showed expression of ET-1 in the vasculature and bronchial epithelium at all gestational ages. ET(A) receptor mRNA expression and ET(B) receptor mRNA increased from 90 to 125 and 135 days gestation. To determine changes in activity of the ET(A) and ET(B) receptors, we studied the effect of selective antagonists to the ET(A) or ET(B) receptors at 120, 130, and 140 days of fetal gestation. ET(A) receptor-mediated vasoconstriction increased from 120 to 140 days, whereas blockade of the ET(B) receptor did not change basal fetal pulmonary vascular tone at any age examined. We conclude that the ET system is developmentally regulated and that the increase in ET(A) receptor gene expression correlates with the onset of the vasodilator response to ET(A) receptor blockade. Although ET(B) receptor gene expression increases during late gestation, the balance of ET receptor activity favors vasoconstriction under basal conditions. We speculate that changes in ET receptor activity play important roles in regulation of pulmonary vascular tone in the ovine fetus.  相似文献   

10.
This investigation was performed to define certain characteristics of insulin-receptor interaction during the last 2 months of gestation in fetal sheep liver and kidney. Twenty-one sheep carrying a total of 46 fetuses were sacrificed at various gestational ages from 94 days to term; fetal and maternal livers and kidneys were analyzed by a radioreceptor assay for insulin binding characteristics. Specific binding of insulin to partially purified ovine fetal liver and kidney plasma membranes increased as gestation approached term, at which time specific binding was two- to fourfold greater to fetal than to maternal tissues. Associated with increased specific binding were late gestational increases in affinity of insulin for receptors in both fetal liver and kidney and an earlier increase in insulin receptor concentration in fetal kidney. These observations in fetal sheep liver and kidney are similar to reported observations in other species. However, the increase in specific binding of insulin to male fetal liver membranes was exponential; in contrast, there was no apparent increase in specific binding to female fetal liver membranes during the gestational interval surveyed. Both the weights and the vertebral column lengths of these fetuses were shown by multivariate analysis to be significantly affected by the interaction between specific binding of insulin and fetal sex. However, in 30 additional sheep fetuses we observed no difference between male and female fetuses in the increase with time in liver glycogen content. The lack of sex difference in this postreceptor event is consonant with the demonstrated dissociation between liver insulin receptors and glycogen synthesis in the late fetal rat. Our observations suggest that late gestational differences between male and female sheep fetuses in insulin specific binding to liver and, possibly, to other tissues such as cartilage, muscle, and/or fat, that are coupled to postreceptor events may account for differences in fetal growth between the sexes.  相似文献   

11.
Endothelial nitric oxide (NO) synthase (eNOS) produces NO, which contributes to vascular reactivity in the fetal lung. Pulmonary vasoreactivity develops during late gestation in the ovine fetal lung, during the period of rapid capillary and alveolar growth. Although eNOS expression peaks near birth in the fetal rat, lung capillary and distal air space development occur much later than in the fetal lamb. To determine whether lung eNOS expression in the lamb differs from the timing and pattern reported in the rat, we measured eNOS mRNA and protein by Northern and Western blot analyses and NOS activity by the arginine-to-citrulline conversion assay in lung tissue from fetal, newborn, and maternal sheep. Cellular localization of eNOS expression was determined by immunohistochemistry. eNOS mRNA, protein, and activity were detected in samples from all ages, and eNOS was expressed predominantly in the vascular endothelium. Lung eNOS mRNA expression increases from low levels at 70 days gestation to peak at 113 days and remains high for the rest of fetal life. Newborn eNOS mRNA expression does not change from fetal levels but is lower in the adult ewe. Lung eNOS protein expression in the fetus rises and peaks at 118 days gestation but decreases before birth. eNOS protein expression rises in the newborn period but is lower in the adult. Lung NOS activity also peaks at 118 days gestation in the fetus before falling in late gestation and remaining low in the newborn and adult. We conclude that the pattern of lung eNOS expression in the sheep differs from that in the rat and may reflect species-related differences in lung development. We speculate that the rise in fetal lung eNOS may contribute to the marked lung growth and angiogenesis that occurs during the same period of time.  相似文献   

12.
The localization has been investigated of the isoforms GLUT1, GLUT3 and GLUT4 of glucose transporter proteins as well as of insulin receptors. Fetal membranes (n=10) were examined by immunohistochemical methods at the light and electron microscopic levels using mono- and polyclonal antibodies. In all amnion epithelial cells, GLUT1 and GLUT3 antibodies were bound to the apical membrane. Very rarely the GLUT1 antibody also immunostained the basolateral membrane and reacted weakly with the endomembrane system and membranes of the lateral cell protrusions. Fibroblasts reacted with the antibodies against GLUT1, GLUT4 and insulin receptor, whereas they were labelled only in one case with GLUT3 antibody. Cytotrophoblast cells were only stained with antibodies against GLUT1 and GLUT3. Antibodies against GLUT4 only reacted with fibroblasts in the membranes. On amnion epithelial cells, weak immunoreactivity with insulin receptor antibodies was detected only at the electron microscopic level. The data indicate: (1) GLUT1 is located on all cells of the amnion, whereas GLUT3 is present in detectable amounts only on amnion epithelial cells and cytotrophoblast; (2) GLUT1 and GLUT3 on amnion epithelial cells are predominantly located on the apical surface; (3) GLUT4 and insulin receptors are not regularly expressed. We suggest that amnion epithelial cells cover their basal glucose requirements from the amniotic fluid and not from the maternal circulation.  相似文献   

13.
Hypoxia is necessary for fetal development; however, excess hypoxia is detrimental. Hypoxia has been extensively studied in the near-term fetus, but less is known about earlier fetal effects. The purpose of this study was to determine the window of vulnerability to severe hypoxia, what organ system(s) is most sensitive, and why hypoxic fetuses die. We induced hypoxia by reducing maternal-inspired O2 from 21% to 8%, which decreased fetal tissue oxygenation assessed by pimonidazole binding. The mouse fetus was most vulnerable in midgestation: 24 h of hypoxia killed 89% of embryonic day 13.5 (E13.5) fetuses, but only 5% of E11.5 and 51% of E17.5 fetuses. Sublethal hypoxia at E12.5 caused growth restriction, reducing fetal weight by 26% and protein by 45%. Hypoxia induced HIF-1 target genes, including vascular endothelial growth factor (Vegf), erythropoietin, glucose transporter-1 and insulin-like growth factor binding protein-1 (Igfbp-1), which has been implicated in human intrauterine growth restriction (IUGR). Hypoxia severely compromised the cardiovascular system. Signs of heart failure, including loss of yolk sac circulation, hemorrhage, and edema, were caused by 18-24 h of hypoxia. Hypoxia induced ventricular dilation and myocardial hypoplasia, decreasing ventricular tissue by 50% and proliferation by 21% in vivo and by 40% in isolated cultured hearts. Epicardial detachment was the first sign of hypoxic damage in the heart, although expression of epicardially derived mitogens, such as FGF2, FGF9, and Wnt9b was not reduced. We propose that hypoxia compromises the fetus through myocardial hypoplasia and reduced heart rate.  相似文献   

14.
In order to study the possible role of nitric oxide (NO) in the human placenta, we measured the concentration of its stable metabolite nitrite (NO2-) in the placentas of women with normal pregnancies and those from pregnancies complicated by intrauterine growth restriction (IUGR) with or without fetal hypoxia. We have measured nitrites by the Griess reaction in 15 placentas from IUGR pregnancies and 12 controls. Cerebroumbilical ratio (C:U) was recorded by color Doppler ultrasound and values below 1 were considered to be a predictor for fetal hypoxia. NO2- levels measured in pathological placentas were increased for at least 93% as compared to control. Subjects from pregnancies complicated by IUGR and fetal hypoxia had increased NO2- as compared to the placentas from pregnancies with IUGR and normal fetal oxygenation. NO production in placenta is increased in pregnancies with IUGR. This effect is more pronounced in those with compromised fetal oxygenation.  相似文献   

15.
TonEBP/NFAT5 (the tonicity-responsive enhancer binding protein/nuclear factor of activated T cells) modulates cellular response to osmotic changes by accumulating inositol and sorbitol inside the cells. Our objective was to assess placental osmolytes, TonEBP/NFAT5 RNA and protein expression, and signaling molecules across gestation between control and intrauterine growth restriction (IUGR) ovine pregnancies. Pregnant sheep were placed in hyperthermic conditions to induce IUGR. Placental tissues were collected at 55, 95, and 130 days gestational age (dGA) to measure inositol, sorbitol, TonEBP/NFAT5 (NFAT5), sodium-dependent myo-inositol transporter (SMIT; official symbol SLC5A3), aldose reductase (AR), and NADPH (official symbol DE-CR1). Placental weight was reduced in IUGR compared to controls at 95 and 130 dGA. Osmolyte concentrations were similar between control and IUGR placentas, but both groups demonstrated a significant decrease in inositol concentration and an increase in sorbitol concentration with advancing gestation. Cytosolic NFAT5 protein decreased significantly from 55 to 95 dGA in both groups, and nuclear NFAT5 protein increased only at 130 dGA in the IUGR group, but no differences were seen between groups for either cytosolic or nuclear NFAT5 protein concentrations. DE-CR1 concentrations were similar between groups and increased significantly with advancing gestational age. AR was lowest at 55dGA, and SLC5A3 increased with advancing gestational age. We conclude that both placental osmolytes inositol and sorbitol (and their corresponding proteins SLC5A3 and AR) change with gestational age and are regulated, at least in part, by NFAT5 and DE-CR1 (NADPH). The inverse relationship between each osmolyte across gestation (e.g., inositol higher in early gestation and sorbitol higher in late gestation) may reflect nutritional needs that change across gestation.  相似文献   

16.
17.
18.
Regulation of foetal development in sheep depends on interactions between the intrinsic capacity of the foetus for growth and the maternal environment. Lambs born in multi-foetus litters have relatively small placentae with fewer cotelydons, and lower birth weights. Litter-size-dependent intrauterine growth restriction (IUGR) is evident at mid gestation when metabolic needs of the conceptus are moderate, and overnutrition of ewes with multiple foetuses does not promote growth of their foetuses to the size of singletons. Those observations suggest that placental and conceptus growth in multi-foetus pregnancies is reprogrammed at mid gestation by an as yet undefined mechanism to attenuate foetal growth. This may protect the foetus from severe nutritional insult during late gestation, when its daily growth rate is at a maximum. In that way, lambs born in large litters with relatively lower birth weights may not experience the long-term physiological insults that can be observed in small lambs born to undernourished ewes.  相似文献   

19.
Human fetuses with severe intrauterine growth restriction (IUGR) have less pancreatic endocrine tissue and exhibit beta-cell dysfunction, which may limit beta-cell function in later life and contribute to their increased incidence of noninsulin-dependent diabetes mellitus. Three factors, replication, apoptosis, and neoformation, contribute to fetal beta-cell mass. We studied an ovine model of IUGR to understand whether nutrient deficits lead to decreased rates of fetal pancreatic beta-cell replication, increased rates of apoptosis, or lower rates of differentiation. At 90% of term gestation, IUGR fetal and pancreatic weights were 58% and 59% less than pair-fed control, respectively. We identified a selective impairment of beta-cell mass compared with other pancreatic cell types in IUGR fetuses. Insulin and insulin mRNA contents were less than other pancreatic endocrine hormones in IUGR fetuses, as were pancreatic insulin positive area (42%) and beta-cell mass (76%). Pancreatic beta-cell apoptosis was not different between treatments. beta-cell capacity for cell cycling, determined by proliferating cell nuclear antigen (PCNA) immunostaining, was not different between treatment groups. However, the percentage of beta-cells actually undergoing mitosis was 72% lower in IUGR fetuses. These results indicate that in utero nutrient deficits decrease the population of pancreatic beta-cells by lengthening G1, S, and G2 stages of interphase and decreasing mitosis near term. Diminished beta-cell mass in IUGR infants at birth, if not adequately compensated for after birth, may contribute to insufficient insulin production in later life and, thus, a predisposition to noninsulin-dependent diabetes.  相似文献   

20.
Heat exposure early in ovine pregnancy results in placental insufficiency and intrauterine growth restriction (PI-IUGR). We hypothesized that heat exposure in this model disrupts placental structure and reduces placental endothelial nitric oxide synthase (eNOS) protein expression. We measured eNOS protein content and performed immunohistochemistry for eNOS in placentas from thermoneutral (TN) and hyperthermic (HT) animals killed at midgestation (90 days). Placental histomorphometry was compared between groups. Compared with the TN controls, the HT group showed reduced delivery weights (457 +/- 49 vs. 631 +/- 21 g; P < 0.05) and a trend for reduced placentome weights (288 +/- 61 vs. 554 +/- 122 g; P = 0.09). Cotyledon eNOS protein content was reduced by 50% in the HT group (P < 0.03). eNOS localized similarly to the vascular endothelium and binucleated cells (BNCs) within the trophoblast of both experimental groups. HT cotyledons showed a reduction in the ratio of fetal to maternal stromal tissue (1.36 +/- 0.36 vs. 3.59 +/- 1.2; P< or = 0.03). We conclude that eNOS protein expression is reduced in this model of PI-IUGR and that eNOS localizes to both vascular endothelium and the BNC. We speculate that disruption of normal vascular development and BNC eNOS production and function leads to abnormal placental vascular tone and blood flow in this model of PI-IUGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号