首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M F Chang  C Y Sun  C J Chen    S C Chang 《Journal of virology》1993,67(5):2529-2536
The functions of delta antigens (HDAgs) in the replication of hepatitis delta virus (HDV) have been identified previously. The small HDAg acts as a transactivator, whereas the large HDAg has a negative effect on replication. To understand the molecular mechanisms involved in the control of HDV replication, we have established a replication system in Huh-7 cells by cotransfecting a monomeric cDNA genome of HDV and a plasmid encoding the small HDAg. We demonstrate that a leucine repeat in the middle domain of the small HDAg is involved in binding to the HDV genome and transactivation of HDV replication. When the leucine repeat was disrupted by a substitution of valine for leucine at position 115, both RNA-binding and transactivation activity of the small HDAg were abolished. In contrast, the binding and transactivation activities were not affected when Leu-37 and Leu-44 of the small HDAg were replaced by valines. In addition, small and large HDAgs can interact with each other to form protein complexes in vitro. The complex formation that may lead to the trans-dominant negative regulation of large HDAg in HDV replication is mediated by a cryptic signal located between amino acid residues 35 and 65 other than the putative N-terminal leucine zipper motif. Furthermore, an extra 21-amino-acid extension near the N terminus converts the small HDAg into a pseudo-large HDAg with negative regulation activity of HDV replication even though the extreme C-terminal residue is unchanged.  相似文献   

2.
The large hepatitis delta antigen (HDAg) has been found to be essential for the assembly of the hepatitis delta virion. Furthermore, in a cotransfection experiment, the large HDAg itself, without the hepatitis delta virus (HDV) genome and small HDAg, could be packaged into hepatitis B surface antigen (HBsAg) particles. By deletion analysis, it was shown that the amino-terminal leucine zipper domain was dispensable for packaging. The large HDAg could also help in copackaging of the small HDAg into HBsAg particles without the need for HDV RNA. This process was probably mediated through direct interaction of the two HDAgs as a mutated large HDAg whose leucine zipper domain was deleted such that it could not help in copackaging of the small HDAg. This mutated large HDAg did not suppress HDV replication, suggesting that this effect is probably also via protein interaction. These results indicated that functional domains of the large HDAg responsible for packaging with HBsAg particles and for the trans-negative effect on HDV replication can be separated.  相似文献   

3.
4.
Hepatitis delta antigen (HDAg) is the only protein encoded by hepatitis delta virus (HDV). HDAg has been demonstrated in the nuclei of HDV-infected hepatocytes, and its nuclear transport may be important for the replication of HDV RNA. In this report, we investigated the mechanism of nuclear transport of HDAg. By expressing fusion proteins consisting of the different portions of HDAg and alpha-globin, we have identified a nuclear localization signal (NLS) within the N-terminal one-third of HDAg. It consists of two stretches of basic amino acid domains separated by a short run of nonbasic amino acids. Both of the basic domains are necessary for the efficient nuclear transport of HDAg. The nonbasic spacer amino acids could be removed without affecting the nuclear targeting of HDAg significantly. Thus, the HDAg NLS belongs to a newly identified class of NLS which consists of two discontiguous stretches of basic amino acids. This NLS is separated from a stretch of steroid receptor NLS-like sequence, which is also present but not functioning as an NLS, in HDAg. Furthermore, we have shown that subfragments of HDAg which do not contain the NLS can be passively transported into the nucleus by a trans-acting full-length HDAg, provided that these subfragments contain the region with a leucine zipper sequence. Thus, our results indicate that HDAg forms aggregates in the cytoplasm and that the HDAg oligomerization is probably mediated by the leucine zipper sequence. Therefore, HDAg is likely transported into the nucleus as a protein complex.  相似文献   

5.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

6.
7.
Herpes simplex virus (HSV) buds from the inner nuclear membrane of the infected cells. The glycoprotein gB-1 of HSV contains a stretch of 69 hydrophobic amino acids near the COOH terminus and a 109-amino acid cytoplasmic domain. By oligonucleotide-directed mutagenesis, five gB-1 mutants were constructed which either lack a cytoplasmic tail or contained 3, 6, 22, or 43 amino acids in the cytoplasmic tail. When expressed in COS cells all of the mutant glycoproteins were synthesized but the rate of intracellular transport and the appearance at the cell surface of the mutant gB-1 protein lacking the cytoplasmic tail or containing 3 and 6 amino acids in the cytoplasmic domain was drastically reduced. The wild-type gB-1 as well as all of the mutants in the cytoplasmic tail were, however, located on the nuclear envelope. These results suggest that the cytoplasmic domain of the glycoprotein gB may play a role in intracellular transport but not in the nuclear localization.  相似文献   

8.
The human fibroblast interleukin 1 (IL-1) receptor is a glycosylated transmembrane protein with a cytoplasmic domain of 213 amino acids. We have constructed a series of deletion mutants of the cytoplasmic region of the IL 1 receptor and have used these mutants to examine its role in ligand binding, internalization, signal transduction, and nuclear localization of IL-1. Mutant receptors lacking most of the cytoplasmic domain are expressed at the cell surface and can bind, internalize, and localize IL-1 at the nucleus, but they do not allow IL-1-mediated induction of interleukin 2 and SV40 promoters. We have localized a critical region for signal transduction to a 50-amino acid segment of the cytoplasmic domain of the receptor. These studies demonstrate that IL-1 internalization and nuclear localization are not sufficient to trigger IL-1 activation of gene expression in T-cells.  相似文献   

9.
10.
Both ATP sites of human P-glycoprotein are essential but not symmetric.   总被引:5,自引:0,他引:5  
Human P-glycoprotein (P-gp) is a cell surface drug efflux pump that contains two nucleotide binding domains (NBDs). Mutations were made in each of the Walker B consensus motifs of the NBDs at positions D555N and D1200N, thought to be involved in Mg(2+) binding. Although the mutant and wild-type P-gps were expressed equivalently at the cell surface and bound the drug analogue [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) comparably, neither of the mutant proteins was able to transport fluorescent substrates nor had detectable basal nor drug-stimulated ATPase activities. The wild-type and D1200N P-gps were labeled comparably with [alpha-(32)P]-8-azido-ATP at a subsaturating concentration of 2.5 microM, whereas labeling of the D555N mutant was severely impaired. Mild trypsin digestion, to cleave the protein into two halves, demonstrated that the N-half of the wild-type and D1200N proteins was labeled preferentially with [alpha-(32)P]-8-azido-ATP. [alpha-(32)P]-8-Azido-ATP labeling at 4 degrees C was inhibited in a concentration-dependent manner by ATP with half-maximal inhibition at approximately 10-20 microM for the P-gp-D1200N mutant and wild-type P-gp. A chimeric protein containing two N-half NBDs was found to be functional for transport and was also asymmetric with respect to [alpha-(32)P]-8-azido-ATP labeling, suggesting that the context of the ATP site rather than its exact sequence is an important determinant for ATP binding. By use of [alpha-(32)P]-8-azido-ATP and vanadate trapping, it was determined that the C-half of wild-type P-gp was labeled preferentially under hydrolysis conditions; however, the N-half was still capable of being labeled with [alpha-(32)P]-8-azido-ATP. Neither mutant was labeled under vanadate trapping conditions, indicating loss of ATP hydrolysis activity in the mutants. In confirmation of the lack of ATP hydrolysis, no inhibition of [(125)I]IAAP labeling was observed in the mutants in the presence of vanadate. Taken together, these data suggest that the two NBDs are asymmetric and intimately linked and that a conformational change in the protein may occur upon ATP hydrolysis. Furthermore, these data are consistent with a model in which binding of ATP to one site affects ATP hydrolysis at the second site.  相似文献   

11.
12.
Modahl LE  Lai MM 《Journal of virology》2000,74(16):7375-7380
Hepatitis delta virus (HDV) contains two types of hepatitis delta antigens (HDAg) in the virion. The small form (S-HDAg) is required for HDV RNA replication, whereas the large form (L-HDAg) potently inhibits it by a dominant-negative inhibitory mechanism. The sequential appearance of these two forms in the infected cells regulates HDV RNA synthesis during the viral life cycle. However, the presence of almost equal amounts of S-HDAg and L-HDAg in the virion raised a puzzling question concerning how HDV can escape the inhibitory effects of L-HDAg and initiate RNA replication after infection. In this study, we examined the inhibitory effects of L-HDAg on the synthesis of various HDV RNA species. Using an HDV RNA-based transfection approach devoid of any artificial DNA intermediates, we showed that a small amount of L-HDAg is sufficient to inhibit HDV genomic RNA synthesis from the antigenomic RNA template. However, the synthesis of antigenomic RNA, including both the 1.7-kb HDV RNA and the 0.8-kb HDAg mRNA, from the genomic-sense RNA was surprisingly resistant to inhibition by L-HDAg. The synthesis of these RNAs was inhibited only when L-HDAg was in vast excess over S-HDAg. These results explain why HDV genomic RNA can initiate replication after infection even though the incoming viral genome is complexed with equal amounts of L-HDAg and S-HDAg. These results also suggest that the mechanisms of synthesis of genomic versus antigenomic RNA are different. This study thus resolves a puzzling question about the early events of the HDV life cycle.  相似文献   

13.
Ras proteins regulate a wide range of biological processes by interacting with a variety of effector proteins. In addition to the known role in tumorigensis, the activated form of Ras exhibits growth-inhibitory effects by unknown mechanisms. Several Ras effector proteins identified as mediators of apoptosis and cell-cycle arrest also exhibit properties normally associated with tumor suppressor proteins. Here, we show that Ras effector RASSF5/NORE-1 binds strongly to K-Ras but weakly to both N-Ras and H-Ras. RASSF5 was found to localize both in the nucleus and the nucleolus in contrast to other Ras effector proteins, RASSF1C and RASSF2, which are localized in the nucleus and excluded from nucleolus. A 50 amino acid residue transferable arginine-rich nucleolar localization signal (NoLS) identified in RASSF5 is capable of interacting with importin-beta and transporting the cargo into the nucleolus. Surprisingly, similar arginine-rich signals identified in RASSF1C and RASSF2 interact with importin-alpha and transport the heterologous cytoplasmic proteins to the nucleus. Interestingly, mutation of arginine residues within these nuclear targeting signals prevented interaction of Ras effector proteins with respective transport receptors and abolished their nuclear translocation. These results provide evidence for the first time that arginine-rich signals are able to recognize different nuclear import receptors and transport the RASSF proteins into distinct sub-cellular compartments. In addition, our data suggest that the nuclear localization of RASSF5 is critical for its cell growth control activity. Together, these data suggest that the transport of Ras effector superfamily proteins into the nucleus/nucleolus may play a vital role in modulating Ras-mediated cell proliferation during tumorigenesis.  相似文献   

14.
Hyaluronan (HA) synthase (HAS) is a membrane-bound enzyme that utilizes UDP-glucuronic acid (GlcUA) and UDP-GlcNAc to synthesize HA. The HAS from Streptococcus pyogenes (spHAS, 419 amino acids) contains six Cys residues, whereas the enzyme from Streptococcus equisimilis (seHAS, 417 amino acids) contains four Cys residues. These Cys residues of seHAS are highly conserved in all Class I HAS family members. Here we investigated the structural and functional roles of these conserved cysteines in seHAS by using site-directed mutagenesis and sensitivity to sulfhydryl modifying reagents. Both seHAS and spHAS were inhibited by sulfhydryl reagents such as N-ethylmaleimide (NEM) and iodoacetamide in a dose-dependent and time-dependent manner. These inhibition curves were biphasic, indicating the presence of sensitive and insensitive components. After treatment of seHAS with NEM, the V(max) value was decreased approximately 50%, and the K(m) values changed only slightly. All the Cys-to-Ala mutants of seHAS were partially active. The least active single (C226A), double (C226A,C262A), or triple (C226A,C262A,C367A) Cys mutants retained 24, 3.2, and 1.4% activity, respectively, compared with wild-type enzyme. Surprisingly, the V(max) value of the seHAS(cys-null) mutant was approximately 17% of wild-type, although the K(m) values for both substrates were increased 3-6-fold. Cys residues, therefore, are not involved in a critical interaction necessary for either substrate binding or catalysis. However, the distribution of HA products was shifted to a smaller size in approximately 25% of the seHAS Cys mutants, particularly the triple mutants. Mass spectroscopic analysis of wild-type and Cys-null seHAS as well as the labeling of all double Cys-to-Ala mutants with [(14)C]NEM demonstrated that seHAS contains no disulfide bonds. We conclude that the four Cys residues in seHAS are not directly involved in catalysis, but that one or more of these Cys residues are located in or near substrate binding or glycosyltransferase active sites, so that their modification hinders the functions of HAS.  相似文献   

15.
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.  相似文献   

16.
17.
Cyclin-binding motifs are essential for the function of p21CIP1.   总被引:8,自引:9,他引:8       下载免费PDF全文
The cyclin-dependent kinase (Cdk) inhibitor p21 is induced by the tumor suppressor p53 and is required for the G1-S block in cells with DNA damage. We report that there are two copies of a cyclin-binding motif in p21, Cy1 and Cy2, which interact with the cyclins independently of Cdk2. The cyclin-binding motifs of p21 are required for optimum inhibition of cyclin-Cdk kinases in vitro and for growth suppression in vivo. Peptides containing only the Cy1 or Cy2 motif partially inhibit cyclin-Cdk kinase activity in vitro and DNA replication in Xenopus egg extracts. A monoclonal antibody which recognizes the Cy1 site of p21 specifically disrupts the association of p21 with cyclin E-Cdk2 and with cyclin D1-Cdk4 in cell extracts. Taken together, these observations suggest that the cyclin-binding motif of p21 is important for kinase inhibition and for formation of p21-cyclin-Cdk complexes in the cell. Finally, we show that the cyclin-Cdk complex is partially active if associated with only the cyclin-binding motif of p21, providing an explanation for how p21 is found associated with active cyclin-Cdk complexes in vivo. The Cy sequences may be general motifs used by Cdk inhibitors or substrates to interact with the cyclin in a cyclin-Cdk complex.  相似文献   

18.
Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.  相似文献   

19.
We investigated the role of ADP-ribosylation factors (ARFs) in Golgi function using biochemical and morphological cell-free assays. An ARF-free cytosol produced from soluble Chinese hamster ovary (CHO) extracts supports intra-Golgi transport by a mechanism that is biochemically indistinguishable from control transport reactions: ARF-free transport reactions are NSF-dependent, remain sensitive to the donor Golgi-specific inhibitor ilimaquinone, and exhibit kinetics that are identical to that of control reactions containing ARFs. In contrast, ARF-free cytosol does not support the formation of coated vesicles on Golgi cisternae. However, vesicle formation is reconstituted upon the addition of ARF1. These data suggest that neither soluble ARFs nor coated vesicle formation are essential for transport. We conclude that cell-free intra-Golgi transport proceeds via a coated vesicle-independent mechanism regardless of vesicle formation on Golgi cisternae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号