首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression.  相似文献   

4.
5.
Expression of rasA plays an important role in conidial germination in Aspergillus nidulans. Conidial germination is required to initiate both infection and asexual development in the opportunistic pathogen Aspergillus fumigatus. Therefore, we sought to determine the requirements for Ras proteins in conidial germination and asexual development of A. fumigatus. A second homolog, rasB, has been identified that characterizes a new subclass of Ras genes. Dominant active (DA) and dominant negative (DN) mutations of each gene were introduced into protoplasts as transgenes. DArasA expression led to reduced conidiation, malformed conidiophores, and altered mitotic progression, whereas expression of DNrasA caused a significant reduction in the rate of conidial germination. In contrast, expression of DNrasB slightly delayed the initiation of germination and caused the development of conidiophores in submerged culture. DArasB expression led to reduced conidiation. RasA and RasB appear to play different, but overlapping, roles in the vegetative growth and asexual development of A. fumigatus.  相似文献   

6.
7.
Although the Ran GTPase-activating protein RanGAP mainly functions in the cytoplasm, several lines of evidence indicate a nuclear function of RanGAP. We found that Schizosaccharomyces pombe RanGAP, SpRna1, bound the core of histone H3 (H3) and enhanced Clr4-mediated H3-lysine 9 (K9) methylation. This enhancement was not observed for methylation of the H3-tail containing K9 and was independent of SpRna1-RanGAP activity, suggesting that SpRna1 itself enhances Clr4-mediated H3-K9 methylation via H3. Although most SpRna1 is in the cytoplasm, some cofractionated with H3. Sprna1(ts) mutations caused decreases in Swi6 localization and H3-K9 methylation at all three heterochromatic regions of S. pombe. Thus, nuclear SpRna1 seems to be involved in heterochromatin assembly. All core histones bound SpRna1 and inhibited SpRna1-RanGAP activity. In contrast, Clr4 abolished the inhibitory effect of H3 on the RanGAP activity of SpRna1 but partially affected the other histones. SpRna1 formed a trimeric complex with H3 and Clr4, suggesting that nuclear SpRna1 is reciprocally regulated by histones, especially H3, and Clr4 on the chromatin to function for higher order chromatin assembly. We also found that SpRna1 formed a stable complex with Xpo1/Crm1 plus Ran-GTP, in the presence of H3.  相似文献   

8.
Histone lysine methylation is known to be involved in the epigenetic regulation of gene expression in all eukaryotes including plants. Here we show that the rice SDG714 is primarily responsible for dimethylation but not trimethylation on histone H3K9 in vivo. Overexpression of YFP-SDG714 in Arabidopsis significantly inhibits plant growth and this inhibition is associated with an enhanced level of H3K9 dimethylation. Our microarray results show that many genes essential for the plant growth and development were downregulated in transgenic Arabidopsis plants overexpressing YFP-SDG714. By chromatin immunoprecipitation analysis, we show that YFP-SDG714 is targeted to specific chromatin regions and dimethylate the H3K9, which is linked with heterochromatinization and the downregulation of genes. Most interestingly, when YFP-SDG714 production is stopped, the inhibited plants can partially restore their growth, suggesting that the perturbation of gene expression caused by YFP-SDG714 is revertible. Taken together, our results point to an important role of SDG714 in H3K9 dimethylation, suppression of gene expression and plant growth, and provide a potential method to regulate gene expression and plant development by an on-off switch of SDG714 expression.  相似文献   

9.
Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken beta-globin domain. We observed two sharp transitions of MENT concentration coinciding with the beta-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation.  相似文献   

10.
11.
12.
Li F  Huarte M  Zaratiegui M  Vaughn MW  Shi Y  Martienssen R  Cande WZ 《Cell》2008,135(2):272-283
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.  相似文献   

13.
14.
15.
Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF). Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A) and β-myosin-heavy chain (β-MHC) genes (Atp2a2 and Myh7, respectively) in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC). As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2) at lysine (K) 4 (H3K4me2) and K9 (H3K9me2), H3 trimethylation (me3) at K27 (H3K27me3) and dimethylation (me2) at K36 (H3K36me2). Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2) were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF.  相似文献   

16.
We have conducted a genomewide investigation into the enzymatic specificity, expression profiles, and binding locations of four histone deacetylases (HDACs), representing the three different phylogenetic classes in fission yeast (Schizosaccharomyces pombe). By directly comparing nucleosome density, histone acetylation patterns and HDAC binding in both intergenic and coding regions with gene expression profiles, we found that Sir2 (class III) and Hos2 (class I) have a role in preventing histone loss; Clr6 (class I) is the principal enzyme in promoter-localized repression. Hos2 has an unexpected role in promoting high expression of growth-related genes by deacetylating H4K16Ac in their open reading frames. Clr3 (class II) acts cooperatively with Sir2 throughout the genome, including the silent regions: rDNA, centromeres, mat2/3 and telomeres. The most significant acetylation sites are H3K14Ac for Clr3 and H3K9Ac for Sir2 at their genomic targets. Clr3 also affects subtelomeric regions which contain clustered stress- and meiosis-induced genes. Thus, this combined genomic approach has uncovered different roles for fission yeast HDACs at the silent regions in repression and activation of gene expression.  相似文献   

17.
18.
Li H  He Z  Lu G  Lee SC  Alonso J  Ecker JR  Luan S 《The Plant cell》2007,19(8):2403-2416
Chromatin-based silencing provides a crucial mechanism for the regulation of gene expression. We have identified a WD40 domain cyclophilin, CYCLOPHILIN71 (CYP71), which functions in gene repression and organogenesis in Arabidopsis thaliana. Disruption of CYP71 resulted in ectopic activation of homeotic genes that regulate meristem development. The cyp71 mutant plants displayed dramatic defects, including reduced apical meristem activity, delayed and abnormal lateral organ formation, and arrested root growth. CYP71 was associated with the chromatin of target gene loci and physically interacted with histone H3. The cyp71 mutant showed reduced methylation of H3K27 at target loci, consistent with the derepression of these genes in the mutant. As CYP71 has close homologs in eukaryotes ranging from fission yeast to human, we propose that it serves as a highly conserved histone remodeling factor involved in chromatin-based gene silencing in eukaryotic organisms.  相似文献   

19.
20.
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4‐mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4‐mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi‐deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号