首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acquired prion disease kuru was restricted to the Fore and neighbouring linguistic groups of the Papua New Guinea highlands and largely affected children and adult women. Oral history documents the onset of the epidemic in the early twentieth century, followed by a peak in the mid-twentieth century and subsequently a well-documented decline in frequency. In the context of these strong associations (gender, region and time), we have considered the genetic factors associated with susceptibility and resistance to kuru. Heterozygosity at codon 129 of the human prion protein gene (PRNP) is known to confer relative resistance to both sporadic and acquired prion diseases. In kuru, heterozygosity is associated with older patients and longer incubation times. Elderly survivors of the kuru epidemic, who had multiple exposures at mortuary feasts, are predominantly PRNP codon 129 heterozygotes and this group show marked Hardy-Weinberg disequilibrium. The deviation from Hardy-Weinberg equilibrium is most marked in elderly women, but is also significant in a slightly younger cohort of men, consistent with their exposure to kuru as boys. Young Fore and the elderly from populations with no history of kuru show Hardy-Weinberg equilibrium. An increasing cline in 129V allele frequency centres on the kuru region, consistent with the effect of selection in elevating the frequency of resistant genotypes in the exposed population. The genetic data are thus strikingly correlated with exposure. Considering the strong coding sequence conservation of primate prion protein genes, the number of global coding polymorphisms in man is surprising. By intronic resequencing in a European population, we have shown that haplotype diversity at PRNP comprises two major and divergent clades associated with 129M and 129V. Kuru may have imposed the strongest episode of recent human balancing selection, which may not have been an isolated episode in human history.  相似文献   

2.
3.
The kuru epidemic lasted almost a century; it started in 1901-1902, reached epidemic proportions in the mid-1950s, and disappeared in the 1990s. Kuru is the prototype member of a group of disorders known as transmissible spongiform encephalopathies (TSEs) or prion diseases. Recent data on the genetics and pathogenesis of TSEs contribute to a better understanding of the documented kuru phenomena, and vice versa, observations made during the kuru epidemic are immensely helpful in understanding the epidemic of variant Creutzfeldt-Jakob disease that is currently developing in Europe. The major goal of this review is to identify and illustrate these points.  相似文献   

4.
Kuru is an acquired human prion disease that primarily affected the Fore linguistic group of the Eastern Highlands of Papua New Guinea. The central clinical feature of kuru is progressive cerebellar ataxia and, in sharp contrast to most cases of sporadic Creutzfeldt-Jakob disease (CJD), dementia is a less prominent and usually late clinical feature. In this regard, kuru is more similar to variant CJD, which also has similar prodromal symptoms of sensory disturbance and joint pains in the legs and psychiatric and behavioural changes. Since a significant part of the clinicopathological diversity seen in human prion disease is likely to relate to the propagation of distinct human prion strains, we have compared the transmission properties of kuru prions with those isolated from patients with sporadic, iatrogenic and variant CJD in both transgenic and wild-type mice. These data have established that kuru prions have prion strain properties equivalent to those of classical (sporadic and iatrogenic) CJD prions but distinct from variant CJD prions. Here, we review these findings and discuss how peripheral routes of infection and other factors may be critical modifiers of the kuru phenotype.  相似文献   

5.
Kuru is a subacute neurodegenerative disease presenting with limb ataxia, dysarthria, and a shivering tremor. The disease progress to complete motor and mental incapacity and death within 6 to 24 months. Neuropathologically, a typical pattern of neuronal loss, astrocytic and microglial proliferation, characteristic "kuru-type" amyloid plaques, and PrP deposits in the cerebral cortex and cerebellum are observed. Kuru is the prototype of a group of human transmissible spongiform encephalopathies (TSEs), or "prion" diseases, that include hereditary, sporadic and infectious forms. The latest member of this group, the variant Creutzfeldt-Jakob disease (vCJD), linked to transmission of bovine spongiform encephalopathy (BSE) to humans, shows features similar to kuru. Kuru has emerged at the beginning of the 1900s in a small indigenous population of New-Guinean Eastern Highlands, reached epidemic proportions in the mid-1950s and disappeared progressively in the latter half of the century to complete absence at the end of the 1990s. Early studies made infection, the first etiologic assumption, seem unlikely and led to a hypothesis that kuru might be a genetically determined or genetically mediated illness. After transmissibility of kuru had been discovered and all major epidemiologic phenomena adequately explained by the spread of an infectious agent with long incubation period through the practice of cannibalism, the pattern of occurrence still continued to suggest a role for genetic predisposition. Recent studies indicate that individuals homozygous for Methionine at a polymorphic position 129 of the prion protein were preferentially affected during the kuru epidemic. The carriers of the alternative 129Met/Val and 129Val/Val genotypes had a longer incubation period and thus developed disease at a later age and at a later stage of the epidemic. Observations made during the kuru epidemic are helpful in the understanding of the current vCJD outbreak, and vice versa clinical and experimental data accumulated in studies of other TSE disorders contribute to better understanding of the documented kuru phenomena.  相似文献   

6.
Kuru is a fatal transmissible spongiform encephalopathy restricted to the Fore people and their neighbours in a remote region of the Eastern Highlands of Papua New Guinea. When first investigated in 1957 it was found to be present in epidemic proportions, with approximately 1000 deaths in the first 5 years, 1957-1961. The changing epidemiological patterns and other significant findings such as the transmissibility of kuru are described in their historical progression. Monitoring the progress of the epidemic has been carried out by epidemiological surveillance in the field for 50 years. From its peak, the number of deaths from kuru declined to 2 in the last 5 years, indicating that the epidemic is approaching its end. The mode of transmission of the prion agent of kuru was the local mortuary practice of transumption. The prohibition of this practice in the 1950s led to the decline in the epidemic, which has been prolonged into the present century by incubation periods that may exceed 50 years. Currently, the epidemiological surveillance is being maintained and further studies on human genetics and the past mortuary practices are being conducted in the kuru-affected region and in communities beyond it.  相似文献   

7.
While the neuropathology of kuru is well defined, there are few data concerning the distribution of disease-related prion protein in peripheral tissues. Here we report the investigation of brain and peripheral tissues from a kuru patient who died in 2003. Neuropathological findings were compared with those seen in classical (sporadic and iatrogenic) Creutzfeldt-Jakob disease (CJD) and variant CJD (vCJD). The neuropathological findings of the kuru patient showed all the stereotypical changes that define kuru, with the occurrence of prominent PrP plaques throughout the brain. Lymphoreticular tissue showed no evidence of prion colonization, suggesting that the peripheral pathogenesis of kuru is similar to that seen in classical CJD rather than vCJD. These findings now strongly suggest that the characteristic peripheral pathogenesis of vCJD is determined by prion strain type alone rather than route of infection.  相似文献   

8.
9.
Prion diseases include kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, and fatal familial insomnia of humans as well as scrapie and bovine spongiform encephalopathy of animals. For many years, the prion diseases were thought to be caused by viruses despite evidence to the contrary. The unique characteristic common to all of these disorders, whether sporadic, dominantly inherited, or acquired by infection, is that they involve aberrant metabolism of the prion protein. In many cases, the cellular prion protein is converted into the scrapie variant by a process after translation that involves a conformational change. Often the human prion diseases are transmissible experimentally to animals, and all of the inherited prion diseases segregate with prion protein gene mutations.  相似文献   

10.
The recognition that variant Creutzfeldt-Jakob disease (vCJD) is caused by the same prion strain as bovine spongiform encephalopathy in cattle has dramatically highlighted the need for a precise understanding of the molecular biology of human prion diseases. Detailed clinical, pathological and molecular data from a large number of human prion disease patients indicate that phenotypic diversity in human prion disease relates in part to the propagation of disease-related PrP isoforms with distinct physicochemical properties. Incubation periods of prion infection in humans can exceed 50 years and therefore it will be some years before the extent of any human vCJD epidemic can be predicted with confidence.  相似文献   

11.
The recognition that variant Creutzfeldt–Jakob disease (vCJD) is caused by the same prion strain as bovine spongiform encephalopathy in cattle has dramatically highlighted the need for a precise understanding of the molecular biology of human prion diseases. Detailed clinical, pathological and molecular data from a large number of human prion disease patients indicate that phenotypic diversity in human prion disease relates in part to the propagation of disease-related PrP isoforms with distinct physicochemical properties. Incubation periods of prion infection in humans can exceed 50 years and therefore it will be some years before the extent of any human vCJD epidemic can be predicted with confidence.  相似文献   

12.
The epidemic of kuru is now known to have been transmitted among the Fore by ritual consumption of infected organs from deceased relatives. As cannibalism was suppressed by government patrol officers during the 1950s, most transmission had ceased by 1957, when the kuru research programme first commenced. As predicted in the 1960s, the epidemic has waned, with progressive ageing of kuru-affected cohorts over the years to 2007. The few cases seen in the twenty-first century, with the longest incubation periods, were almost certainly exposed as children prior to 1960. Although the research programme had almost no role in bringing the kuru epidemic to an end, it did provide important knowledge that was to help the wider world in controlling the later epidemics of iatrogenic and variant Creutzfeldt-Jakob disease and bovine spongiform encephalopathy.  相似文献   

13.
BACKGROUND: Prion diseases belong to a group of neurodegenerative disorders affecting humans and animals. The human diseases include kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). The pathogenic mechanisms of the prion diseases are not yet understood. Monoclonal antibodies provide valuable tools in the diagnosis, as well as in the basic research, of several diseases; however, monospecific antisera or monoclonal antibodies (mAbs) against human prion proteins were, until now, not available. MATERIALS AND METHODS: We have developed an immunization protocol based on nucleic acid injection into nontolerant PrP0/0 mice. DNA or RNA coding for different human prion proteins including the mutated sequences associated with CJD, GSS, and FFI were injected into muscle tissue. Mice were primarily inoculated with DNA plasmids encoding the prion protein (PRNP) gene and boosted either with DNA, RNA, or recombinant Semliki Forest Virus particles expressing PRNP. Hybridomas were then prepared. RESULTS: Different mAbs against human prion proteins were obtained, and their binding behavior was analyzed by peptide enzyme-linked immunosorbent assay, Western blot, immunofluorescence, and immunoprecipitation. Their cross-reactivity with prion protein from other species was also determined. Our mAbs are directed against four different linear epitopes and may also recognize discontinuous regions of the native prion protein. CONCLUSIONS: These antibodies should allow us to address questions concerning the nature of the prion protein as well as the initiation and progression of prion diseases. Moreover, these mAbs can now be used for the diagnosis of prion diseases of humans and animals.  相似文献   

14.
A comparison of the pathological profiles of two spongiform encephalopathies with a similar presumptive route of infection was performed. Archival kuru and recent variant Creutzfeldt-Jakob disease (vCJD) cases reveal distinct lesional differences, particularly with respect to prion protein, suggesting that the strain of agent is important in determining the phenotype. Genotype analysis of the polymorphism on codon 129 reveals (in conjunction with updated information from more kuru cases) that all three genotypes (VV, MV and MM (where M is methionine and V is valine)) are detected in kuru with some preference for MM homozygosity. The presence of valine does not therefore appear to determine peripheral selection of PrPCJD. vCJD remains restricted to date to MM homozygosity on codon 129. It remains to be determined whether this genotype is dictating a shorter incubation period.  相似文献   

15.
Prion protein and the transmissible spongiform encephalopathies   总被引:4,自引:0,他引:4  
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that occur in a wide variety of mammals. In humans, TSE diseases include kuru, sporadic and iatrogenic Creutzfeldt-Jakob disease (CJD), Gerstmann-Str?ussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). So far, TSE diseases occur only rarely in humans; however, scrapie is a widespread problem in sheep, and the recent epidemic of bovine spongiform encephalopathy (BSE or mad cow disease) has seriously affected the British cattle industry. Of special concern is the recent appearance of a new variant of CJD in humans that is suspected of being caused by infections from BSE-infected cattle products. In all these diseases, an abnormal form of a host protein, prion protein (PrP), is essential for the pathogenic process. The relationship of this protein to the transmissible agent is currently the subject of great interest and controversy and is the subject of this review.  相似文献   

16.
17.
《朊病毒》2013,7(2):108-115
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare.  相似文献   

18.
Jiri G. Safar 《朊病毒》2012,6(2):108-115
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare.  相似文献   

19.
We report here on the ultrastructure of amyloid plaques in chronic wasting disease (CWD) transmitted to Tg20 transgenic mice overexpressing prion protein (PrPc). We identified three main types of amyloid deposits in mCWD: large amyloid deposits, unicentric plaques similar to kuru plaques in human prion diseases and multicentric plaques reminiscent of plaques typical of GSS. The most unique type of plaques were large subpial amyloid deposits. They were composed of large areas of amyloid fibrils but did not form ?star-like” appearances of unicentric plaques. All types of plaques were totally devoid of dystrophic neuritic elements. However, numerous microglial cells invaded them. The plaques observed by confocal laser microscope were of the same types as those analyzed by electron microscopy. Neuronal processes surrounding the plaques did not show typical features of neuroaxonal dystrophy.  相似文献   

20.
Modification of the cellular prion protein has been correlated with the acquisition of several neurodegenerative diseases, including kuru, scrapie, bovine spongiform encephalopathy (BSE), and Creutzfeldt–Jakob disease (CJD). Sequence conservation and amino acid identity are known to influence the efficacy of interspecific transmission. We analyzed patterns of interspecific genetic variation with a view toward identifying features related to disease transmission. The reconstructed gene trees and amino acid tree were compared with the species tree, and all discordances observed were related to the species barrier of disease transmission. The rates of synonymous substitution, nonsynonymous substitution, and nucleotide content were determined for the protein-coding gene. Substitutions implicated in each of the prion diseases were found to occur in regions of the protein that are least variable across all species—opposite to the pattern of variability expected from interaction with an infectious pathogen. Amino acid residues related to the species barrier form a single cluster associated with the first alpha-helical domain of the protein. Residues related to sporadic and hereditary human prion disease form two separate clusters, associated with the second and third alpha-helical domains. Taken together, these results are consistent with the view that prion diseases arise from accidents in protein folding, rather than infection with an undiscovered virus-like particle. We speculate that the differences in disease phenotype between transmissable and hereditary forms could result from interactions between different parts of the protein during propagation. Received: 18 April 1997 / Accepted: 17 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号