首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Discussion surrounding the settlement of the New World has recently gained momentum with advances in molecular biology, archaeology and bioanthropology. Recent evidence from these diverse fields is found to support different colonization scenarios. The currently available genetic evidence suggests a “single migration” model, in which both early and later Native American groups derive from one expansion event into the continent. In contrast, the pronounced anatomical differences between early and late Native American populations have led others to propose more complex scenarios, involving separate colonization events of the New World and a distinct origin for these groups.

Methodology/Principal Findings

Using large samples of Early American crania, we: 1) calculated the rate of morphological differentiation between Early and Late American samples under three different time divergence assumptions, and compared our findings to the predicted morphological differentiation under neutral conditions in each case; and 2) further tested three dispersal scenarios for the colonization of the New World by comparing the morphological distances among early and late Amerindians, East Asians, Australo-Melanesians and early modern humans from Asia to geographical distances associated with each dispersion model. Results indicate that the assumption of a last shared common ancestor outside the continent better explains the observed morphological differences between early and late American groups. This result is corroborated by our finding that a model comprising two Asian waves of migration coming through Bering into the Americas fits the cranial anatomical evidence best, especially when the effects of diversifying selection to climate are taken into account.

Conclusions

We conclude that the morphological diversity documented through time in the New World is best accounted for by a model postulating two waves of human expansion into the continent originating in East Asia and entering through Beringia.  相似文献   

2.

Background

From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador.

Methodology/Principal Findings

We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ∼90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas.

Conclusions/Significance

As a whole, the results are compatible with the hypothesis that today''s A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (∼5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade.  相似文献   

3.

Background

Most investigations regarding the First Americans have primarily focused on four themes: when the New World was settled by humans; where they came from; how many migrations or colonization pulses from elsewhere were involved in the process; and what kinds of subsistence patterns and material culture they developed during the first millennia of colonization. Little is known, however, about the symbolic world of the first humans who settled the New World, because artistic manifestations either as rock-art, ornaments, and portable art objects dated to the Pleistocene/Holocene transition are exceedingly rare in the Americas.

Methodology/Principal Findings

Here we report a pecked anthropomorphic figure engraved in the bedrock of Lapa do Santo, an archaeological site located in Central Brazil. The horizontal projection of the radiocarbon ages obtained at the north profile suggests a minimum age of 9,370±40 BP, (cal BP 10,700 to 10,500) for the petroglyph that is further supported by optically stimulated luminescence (OSL) dates from sediment in the same stratigraphic unit, located between two ages from 11.7±0.8 ka BP to 9.9±0.7 ka BP.

Conclusions

These data allow us to suggest that the anthropomorphic figure is the oldest reliably dated figurative petroglyph ever found in the New World, indicating that cultural variability during the Pleistocene/Holocene boundary in South America was not restricted to stone tools and subsistence, but also encompassed the symbolic dimension.  相似文献   

4.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

5.
Figueiro G  Hidalgo PC  Sans M 《PloS one》2011,6(6):e20978

Background

Among the founding mitochondrial haplogroups involved in the peopling of the Americas, haplogroup C1d has been viewed as problematic because of its phylogeny and because of the estimates of its antiquity, apparently being much younger than other founding haplogroups. Several recent analyses, based on data from the entire mitochondrial genome, have contributed to an advance in the resolution of these problems. The aim of our analysis is to compare the conclusions drawn from the available HVR-I and HVR-II data for haplogroup C1d with the ones based on whole mitochondrial genomes.

Methodology/Principal Findings

HVR-I and HVR-II sequences defined as belonging to haplogroup C1d by standard criteria were gathered from the literature as well as from population studies carried out in Uruguay. Sequence phylogeny was reconstructed using median-joining networks, geographic distribution of lineages was analyzed and the age of the most recent common ancestor estimated using the ρ-statistic and two different mutation rates. The putative ancestral forms of the haplogroup were found to be more widespread than the derived lineages, and the lineages defined by np 194 were found to be widely distributed and of equivalent age.

Conclusions/Significance

The analysis of control region sequences is found to still harbor great potential in tracing microevolutionary phenomena, especially those found to have occurred in more recent times. Based on the geographic distributions of the alleles of np 7697 and np 194, both discussed as possible basal mutations of the C1d phylogeny, we suggest that both alleles were part of the variability of the haplogroup at the time of its entrance. Moreover, based on the mutation rates of the different sites stated to be diagnostic, it is possible that the anomalies found when analyzing the haplogroup are due to paraphyly.  相似文献   

6.
Peng MS  Zhang YP 《PloS one》2011,6(6):e21509

Background

Extensive studies in different fields have been performed to reconstruct the prehistory of populations in the Japanese archipelago. Estimates the ancestral population dynamics based on Japanese molecular sequences can extend our understanding about the colonization of Japan and the ethnogenesis of modern Japanese.

Methodology/Principal Findings

We applied Bayesian skyline plot (BSP) with a dataset based on 952 Japanese mitochondrial DNA (mtDNA) genomes to depict the female effective population size (Nef) through time for the total Japanese and each of the major mtDNA haplogroups in Japanese. Our results revealed a rapid Nef growth since ∼5 thousand years ago had left ∼72% Japanese mtDNA lineages with a salient signature. The BSP for the major mtDNA haplogroups indicated some different demographic history.

Conclusions/Significance

The results suggested that the rapid population expansion acted as a major force in shaping current maternal pool of Japanese. It supported a model for population dynamics in Japan in which the prehistoric population growth initiated in the Middle Jomon Period experienced a smooth and swift transition from Jomon to Yayoi, and then continued through the Yayoi Period. The confounding demographic backgrounds of different mtDNA haplogroups could also have some implications for some related studies in future.  相似文献   

7.
It is well accepted that the Americas were the last continents reached by modern humans, most likely through Beringia. However, the precise time and mode of the colonization of the New World remain hotly disputed issues. Native American populations exhibit almost exclusively five mitochondrial DNA (mtDNA) haplogroups (A-D and X). Haplogroups A-D are also frequent in Asia, suggesting a northeastern Asian origin of these lineages. However, the differential pattern of distribution and frequency of haplogroup X led some to suggest that it may represent an independent migration to the Americas. Here we show, by using 86 complete mitochondrial genomes, that all Native American haplogroups, including haplogroup X, were part of a single founding population, thereby refuting multiple-migration models. A detailed demographic history of the mtDNA sequences estimated with a Bayesian coalescent method indicates a complex model for the peopling of the Americas, in which the initial differentiation from Asian populations ended with a moderate bottleneck in Beringia during the last glacial maximum (LGM), around approximately 23,000 to approximately 19,000 years ago. Toward the end of the LGM, a strong population expansion started approximately 18,000 and finished approximately 15,000 years ago. These results support a pre-Clovis occupation of the New World, suggesting a rapid settlement of the continent along a Pacific coastal route.  相似文献   

8.

Background

Understanding the dynamics of the human range expansion across northeastern Eurasia during the late Pleistocene is central to establishing empirical temporal constraints on the colonization of the Americas [1]. Opinions vary widely on how and when the Americas were colonized, with advocates supporting either a pre-[2] or post-[1], [3], [4], [5], [6] last glacial maximum (LGM) colonization, via either a land bridge across Beringia [3], [4], [5], a sea-faring Pacific Rim coastal route [1], [3], a trans-Arctic route [4], or a trans-Atlantic oceanic route [5]. Here we analyze a large sample of radiocarbon dates from the northeast Eurasian Upper Paleolithic to identify the origin of this expansion, and estimate the velocity of colonization wave as it moved across northern Eurasia and into the Americas.

Methodology/Principal Findings

We use diffusion models [6], [7] to quantify these dynamics. Our results show the expansion originated in the Altai region of southern Siberia ∼46kBP , and from there expanded across northern Eurasia at an average velocity of 0.16 km per year. However, the movement of the colonizing wave was not continuous but underwent three distinct phases: 1) an initial expansion from 47-32k calBP; 2) a hiatus from ∼32-16k calBP, and 3) a second expansion after the LGM ∼16k calBP. These results provide archaeological support for the recently proposed three-stage model of the colonization of the Americas [8], [9]. Our results falsify the hypothesis of a pre-LGM terrestrial colonization of the Americas and we discuss the importance of these empirical results in the light of alternative models.

Conclusions/Significance

Our results demonstrate that the radiocarbon record of Upper Paleolithic northeastern Eurasia supports a post-LGM terrestrial colonization of the Americas falsifying the proposed pre-LGM terrestrial colonization of the Americas. We show that this expansion was not a simple process, but proceeded in three phases, consistent with genetic data, largely in response to the variable climatic conditions of late Pleistocene northeast Eurasia. Further, the constraints imposed by the spatiotemporal gradient in the empirical radiocarbon record across this entire region suggests that North America cannot have been colonized much before the existing Clovis radiocarbon record suggests.  相似文献   

9.

Background

Although there are different strains of HIV-1 in a chronically infected individual, only one or limited virus strains are successfully transmitted to a new individual. The reason for this “transmission bottleneck” is as yet unknown.

Methodology/Principal Findings

A human cervical explant model was used to measure HIV-1 transmission efficiency of viral strains from chronic infections, and transmitter/founder variants. We also evaluated the genetic characteristics of HIV-1 variants in the inoculums compared to those transmitted across the cervical mucosa. Eight different HIV-1 isolates were used in this study, six chronic isolates and two transmitter/founder viruses. The transmission efficiency of the chronic and transmitter/founder virus isolates and the viral diversity of chronic isolates before and after viral transmission were assessed. The results indicate that transmitter/founder viruses did not display higher transmission efficiency than chronic HIV-1 isolates. Furthermore, no evidence for a difference in diversity was found between the inoculums and transmitted virus strains. Phylogenetic analysis indicated that the sequences of variants in the inoculums and those present in transmitted virus intermingled irrespective of co-receptor usage. In addition, the inoculum and transmitted variants had a similar pairwise distance distribution.

Conclusion

There was no selection of a single or limited number of viral variants during HIV-1 transmission across the cervical mucosa in the organ culture model, indicating that the cervical mucosa alone may not produce the transmission bottleneck of HIV-1 infection observed in vivo.  相似文献   

10.

Background

Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences.

Results

To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae.

Conclusions

Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Chikungunya virus (CHIKV), an alphavirus and member of the Togaviridae family, is capable of causing severe febrile disease in humans. In December of 2013 the Asian Lineage of CHIKV spread from the Old World to the Americas, spreading rapidly throughout the New World. Given this new emergence in naïve populations we studied the viral genetic diversity present in infected individuals to understand how CHIKV may have evolved during this continuing outbreak.

Methodology/Principle Findings

We used deep-sequencing technologies coupled with well-established bioinformatics pipelines to characterize the minority variants and diversity present in CHIKV infected individuals from Guadeloupe and Martinique, two islands in the center of the epidemic. We observed changes in the consensus sequence as well as a diverse range of minority variants present at various levels in the population. Furthermore, we found that overall diversity was dramatically reduced after single passages in cell lines. Finally, we constructed an infectious clone from this outbreak and identified a novel 3’ untranslated region (UTR) structure, not previously found in nature, that led to increased replication in insect cells.

Conclusions/Significance

Here we preformed an intrahost quasispecies analysis of the new CHIKV outbreak in the Caribbean. We identified novel variants present in infected individuals, as well as a new 3’UTR structure, suggesting that CHIKV has rapidly evolved in a short period of time once it entered this naïve population. These studies highlight the need to continue viral diversity surveillance over time as this epidemic evolves in order to understand the evolutionary potential of CHIKV.  相似文献   

12.

Context

Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress.

Objective

The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated.

Design and setting

A multi-centre, cross-sectional case-control study was performed.

Patients

Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women.

Main outcome measures

Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells.

Results

Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05), mitochondrial membrane potential (P<0.01) and GSH levels (P<0.05), and an increase in ROS production (P<0.05) with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05), while the activity of mitochondrial complex I (P<0.001), but not that of complex III, was found to be inhibited in the same population.

Conclusions

Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.  相似文献   

13.

Background

The ancestry of African-descended Americans is known to be drawn from three distinct populations: African, European, and Native American. While many studies consider this continental admixture, few account for the genetically distinct sources of ancestry within Africa – the continent with the highest genetic variation. Here, we dissect the within-Africa genetic ancestry of various populations of the Americas self-identified as having primarily African ancestry using uniparentally inherited mitochondrial DNA.

Methods and Principal Findings

We first confirmed that our results obtained using uniparentally-derived group admixture estimates are correlated with the average autosomal-derived individual admixture estimates (hence are relevant to genomic ancestry) by assessing continental admixture using both types of markers (mtDNA and Y-chromosome vs. ancestry informative markers). We then focused on the within-Africa maternal ancestry, mining our comprehensive database of published mtDNA variation (∼5800 individuals from 143 African populations) that helped us thoroughly dissect the African mtDNA pool. Using this well-defined African mtDNA variation, we quantified the relative contributions of maternal genetic ancestry from multiple W/WC/SW/SE (West to South East) African populations to the different pools of today''s African-descended Americans of North and South America and the Caribbean.

Conclusions

Our analysis revealed that both continental admixture and within-Africa admixture may be critical to achieving an adequate understanding of the ancestry of African-descended Americans. While continental ancestry reflects gender-specific admixture processes influenced by different socio-historical practices in the Americas, the within-Africa maternal ancestry reflects the diverse colonial histories of the slave trade. We have confirmed that there is a genetic thread connecting Africa and the Americas, where each colonial system supplied their colonies in the Americas with slaves from African colonies they controlled or that were available for them at the time. This historical connection is reflected in different relative contributions from populations of W/WC/SW/SE Africa to geographically distinct Africa-derived populations of the Americas, adding to the complexity of genomic ancestry in groups ostensibly united by the same demographic label.  相似文献   

14.

Background and Aims

Oil-producing flowers related to oil-bee pollination are a major innovation in Neotropical and Mexican Iridaceae. In this study, phylogenetic relationships were investigated among a wide array of New World genera of the tribes Sisyrinchieae, Trimezieae and Tigridieae (Iridaceae: Iridoideae) and the evolution of floral glandular structures, which are predominantly trichomal elaiophores, was examined in relation to the diversification of New World Iridaceae.

Methods

Phylogenetic analyses based on seven molecular markers obtained from 97 species were conducted to produce the first extensive phylogeny of the New World tribes of subfamily Iridoideae. The resulting phylogenetic hypothesis was used to trace the evolutionary history of glandular structures present in the flowers of numerous species in each tribe. Hypotheses of differential diversification rates among lineages were also investigated using both topological and Binary-State Speciation and Extinction methods.

Key Results and Conclusions

Floral glandular structures and especially trichomal elaiophores evolved multiple times independently in the American tribes of Iridoideae. The distribution pattern of species displaying glandular trichomes across the phylogeny reveals lability in the pollination system and suggests that these structures may have played a significant role in the diversification of the Iridoideae on the American continent.  相似文献   

15.

Background

Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America.

Methodology and Principal Findings

Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized.

Conclusions

Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus.  相似文献   

16.

Background

The ecological factors contributing to the evolution of tropical vertebrate communities are still poorly understood. Primate communities of the tropical Americas have fewer folivorous but more frugivorous genera than tropical regions of the Old World and especially many more frugivorous genera than Madagascar. Reasons for this phenomenon are largely unexplored. We developed the hypothesis that Neotropical fruits have higher protein concentrations than fruits from Madagascar and that the higher representation of frugivorous genera in the Neotropics is linked to high protein concentrations in fruits. Low fruit protein concentrations in Madagascar would restrict the evolution of frugivores in Malagasy communities.

Methodology/Principal Findings

We reviewed the literature for nitrogen concentrations in fruits from the Neotropics and from Madagascar, and analyzed fruits from an additional six sites in the Neotropics and six sites in Madagascar. Fruits from the Neotropical sites contain significantly more nitrogen than fruits from the Madagascar sites. Nitrogen concentrations in New World fruits are above the concentrations to satisfy nitrogen requirements of primates, while they are at the lower end or below the concentrations to cover primate protein needs in Madagascar.

Conclusions/Significance

Fruits at most sites in the Neotropics contain enough protein to satisfy the protein needs of primates. Thus, selection pressure to develop new adaptations for foods that are difficult to digest (such as leaves) may have been lower in the Neotropics than in Madagascar. The low nitrogen concentrations in fruits from Madagascar may contribute to the almost complete absence of frugivorous primate species on this island.  相似文献   

17.
The Americas were the last continents to be populated by humans, and their colonization represents a very interesting chapter in our species' evolution in which important issues are still contentious or largely unknown. One difficult topic concerns the details of the early peopling of Beringia, such as for how long it was colonized before people moved into the Americas and the demography of this occupation. A recent work using mitochondrial genome (mtDNA) data presented evidence for a so called "three-stage model" consisting of a very early expansion into Beringia followed by approximately 20,000 years of population stability before the final entry into the Americas. However, these results are in disagreement with other recent studies using similar data and methods. Here, we reanalyze their data to check the robustness of this model and test the ability of Native American mtDNA to discriminate details of the early colonization of Beringia. We apply the Bayesian Skyline Plot approach to recover the past demographic dynamic underpinning these events using different mtDNA data sets. Our results refute the specific details of the "three-stage model", since the early stage of expansion into Beringia followed by a long period of stasis could not be reproduced in any mtDNA data set cleaned from non-Native American haplotypes. Nevertheless, they are consistent with a moderate population bottleneck in Beringia associated with the Last Glacial Maximum followed by a strong population growth around 18,000 years ago as suggested by other recent studies. We suggest that this bottleneck erased the signals of ancient demographic history from recent Native American mtDNA pool, and conclude that the proposed early expansion and occupation of Beringia is an artifact caused by the misincorporation of non-Native American haplotypes.  相似文献   

18.

Background

Genome wide association study (GWAS) has been proven to be a powerful tool for detecting genomic variants associated with complex traits. However, the specific genes and causal variants underlying these traits remain unclear.

Results

Here, we used target-enrichment strategy coupled with next generation sequencing technique to study target regions which were found to be associated with milk production traits in dairy cattle in our previous GWAS. Among the large amount of novel variants detected by targeted resequencing, we selected 200 SNPs for further association study in a population consisting of 2634 cows. Sixty six SNPs distributed in 53 genes were identified to be associated significantly with on milk production traits. Of the 53 genes, 26 were consistent with our previous GWAS results. We further chose 20 significant genes to analyze their mRNA expression in different tissues of lactating cows, of which 15 were specificly highly expressed in mammary gland.

Conclusions

Our study illustrates the potential for identifying causal mutations for milk production traits using target-enrichment resequencing and extends the results of GWAS by discovering new and potentially functional mutations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1105) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background and Aims

Land-use changes and associated extinction/colonization dynamics can have a large impact on population genetic diversity of plant species. The aim of this study was to investigate genetic diversity in a founding population of the self-incompatible forest herb Primula elatior and to elucidate the processes that affect genetic diversity shortly after colonization.

Methods

AFLP markers were used to analyse genetic diversity across three age classes and spatial genetic structure within a founding population of P. elatior in a recently established stand in central Belgium. Parentage analyses were used to assess the amount of gene flow from outside the population and to investigate the contribution of mother plants to future generations.

Results

The genetic diversity of second and third generation plants was significantly reduced compared with that of first generation plants. Significant spatial genetic structure was observed. Parentage analyses showed that <20 % of the youngest individuals originated from parents outside the study population and that >50 % of first and second generation plants did not contribute to seedling recruitment.

Conclusions

These results suggest that a small effective population size and genetic drift can lead to rapid decline of genetic diversity of offspring in founding populations shortly after colonization. This multigenerational study also highlights that considerable amounts of gene flow seem to be required to counterbalance genetic drift and to sustain high levels of genetic diversity after colonization in recently established stands.Key words: AFLP, colonization, forest regeneration, genetic diversity, genetic drift, parentage analysis, spatial genetic structure  相似文献   

20.

Background

Besides being responsible for energy production in the cell, mitochondria are central players in apoptosis as well as the main source of harmful reactive oxygen species. Therefore, it can be hypothesised that sequence variation in the mitochondrial genome is a contributing factor to the etiology of diseases related to these different cellular events, including cancer. The aim of the present study was to assess the frequency of haplogroups and polymorphisms in the control region (CR) of mitochondrial DNA of peripheral blood mononuclear cells from patients with prostate carcinoma (n = 304) versus patients screened for prostate disease but found to be negative for cancer on biopsy (n = 278) in a Middle European population.

Methodology/Principal Findings

The nine major European haplogroups and the CR polymorphisms were identified by means of primer extension analysis and DNA sequencing, respectively. We found that mitochondrial haplogroup frequencies and CR polymorphisms do not differ significantly between patients with or without prostate cancer, implying no impact of inherited mitochondrial DNA variation on predisposition to prostate carcinoma in a Middle European population.

Conclusions/Significance

Our results contrast with a recent report claiming an association between mtDNA haplogroup U and prostate cancer in a North American population of caucasian descent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号