首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TRPC3/6/7 subfamily of cation channels   总被引:7,自引:0,他引:7  
Trebak M  Vazquez G  Bird GS  Putney JW 《Cell calcium》2003,33(5-6):451-461
The mammalian transient receptor potential (TRP) proteins consist of a superfamily of Ca2+-permeant non-selective cation channels with structural similarities to Drosophila TRP. The TRP superfamily can be divided into three major families, among them the "canonical TRP" family (TRPC). The seven protein products of the mammalian TRPC family of genes (designated TRPC1-7) share in common the activation through PLC-coupled receptors and have been proposed to encode components of native store-operated channels in different cell types. In addition, the three members of the TRPC3/6/7 subfamily of TRPC channels can be activated by diacylglycerol analogs, providing a possible mechanism of activation of these channels by PLC-coupled receptors. This review summarizes the current knowledge about the mechanism of activation of the TRPC3/6/7 subfamily, as well as the potential role of these proteins as components of native Ca2+-permeant channels.  相似文献   

2.
Increased vascular smooth muscle contractility in TRPC6-/- mice   总被引:12,自引:0,他引:12       下载免费PDF全文
Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for receptor-operated cation entry. To define the physiological role of TRPC6, we have developed a TRPC6-deficient mouse model. These mice showed an elevated blood pressure and enhanced agonist-induced contractility of isolated aortic rings as well as cerebral arteries. Smooth muscle cells of TRPC6-deficient mice have higher basal cation entry, increased TRPC-carried cation currents, and more depolarized membrane potentials. This higher basal cation entry, however, was completely abolished by the expression of a TRPC3-specific small interference RNA in primary TRPC6(-)(/)(-) smooth muscle cells. Along these lines, the expression of TRPC3 in wild-type cells resulted in increased basal activity, while TRPC6 expression in TRPC6(-/-) smooth muscle cells reduced basal cation influx. These findings imply that constitutively active TRPC3-type channels, which are up-regulated in TRPC6-deficient smooth muscle cells, are not able to functionally replace TRPC6. Thus, TRPC6 has distinct nonredundant roles in the control of vascular smooth muscle tone.  相似文献   

3.
In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx) neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs) could be involved. As canonical transient receptor channels (TRPCs) are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (~90%) of hcrt/orx neurons. Using intracellular applications of TRPC antibodies against subunits known to form NSCCs, we then found that only TRPC5 antibodies elicited an outward current, together with hyperpolarization and inhibition of the cells. These effects were blocked by co-application of a TRPC5 antigen peptide. Voltage-clamp ramps in the presence or absence of TRPC5 antibodies indicated the presence of a current with a reversal potential close to -15 mV. Application of the non-selective TRPC channel blocker, flufenamic acid, had a similar effect, which could be occluded in cells pre-loaded with TRPC5 antibodies. Finally, using the same TRPC5 antibodies we found that most hcrt/orx cells show immunostaining for the TRPC5 subunit. These results suggest that hcrt/orx neurons are endowed with a constitutively active non-selective cation current which depends on TRPC channels containing the TRPC5 subunit and which is responsible for the depolarized and active state of these cells.  相似文献   

4.
5.
The TRPC family of receptor-activated cation channels (TRPC channels) can be subdivided into four subfamilies based on sequence homology as well as functional similarities. Members of the TRPC3/6/7 subfamily share common biophysical characteristics and are activated by diacylglycerol in a membrane-delimited manner. At present, it is only poorly understood whether members of the TRPC3/6/7 subfamily are functionally redundant or whether they serve distinct cellular roles. By electrophysiological and fluorescence imaging strategies we show that TRPC3 displays considerable constitutive activity, while TRPC6 is a tightly regulated channel. To identify potential molecular correlates accounting for the functional difference, we analyzed the glycosylation pattern of TRPC6 compared with TRPC3. Two NX(S/T) motifs in TRPC6 were mutated (Asn to Gln) by in vitro mutagenesis to delete one or both extracellular N-linked glycosylation sites. Immunoblotting analysis of HEK 293 cell lysates expressing TRPC6 wild type and mutants favors a model of TRPC6 that is dually glycosylated within the first (e1) and second extracellular loop (e2) as opposed to the monoglycosylated TRPC3 channel (Vannier, B., Zhu, X., Brown, D., and Birnbaumer, L. (1998) J. Biol. Chem. 273, 8675-8679). Elimination of the e2 glycosylation site, missing in the monoglycosylated TRPC3, was sufficient to convert the tightly receptor-regulated TRPC6 into a constitutively active channel, displaying functional characteristics of TRPC3. Reciprocally, engineering of an additional second glycosylated site in TRPC3 to mimic the glycosylation status in TRPC6 markedly reduced TRPC3 basal activity. We conclude that the glycosylation pattern plays a pivotal role for the tight regulation of TRPC6 through phospholipase C-activating receptors.  相似文献   

6.
Human erythrocytes express cation channels which contribute to the background leak of Ca(2+), Na(+) and K(+). Excessive activation of these channels upon energy depletion, osmotic shock, Cl(-) depletion, or oxidative stress triggers suicidal death of erythrocytes (eryptosis), characterized by cell-shrinkage and exposure of phosphatidylserine at the cell surface. Eryptotic cells are supposed to be cleared from circulating blood. The present study aimed to identify the cation channels. RT-PCR revealed mRNA encoding the non-selective cation channel TRPC6 in erythroid progenitor cells. Western blotting indicated expression of TRPC6 protein in erythrocytes from man and wildtype mice but not from TRPC6(-/-) mice. According to flow-cytometry, Ca(2+) entry into human ghosts prepared by hemolysis in EGTA-buffered solution containing the Ca(2+) indicator Fluo3/AM was inhibited by the reducing agent dithiothreitol and the erythrocyte cation channel blockers ethylisopropylamiloride and amiloride. Loading of the ghosts with antibodies against TRPC6 or TRPC3/6/7 but neither with antibodies against TRPM2 or TRPC3 nor antibodies pre-adsorbed with the immunizing peptides inhibited ghost Ca(2+) entry. Moreover, free Ca(2+) concentration, cell-shrinkage, and phospholipid scrambling were significantly lower in Cl(-)-depleted TRPC6(-/-) erythrocytes than in wildtype mouse erythrocytes. In conclusion, human and mouse erythrocytes express TRPC6 cation channels which participate in cation leak and Ca(2+)-induced suicidal death.  相似文献   

7.
Members of the Transient Receptor Potential Canonical (TRPC) family of channel forming proteins are among the most important Ca2+-permeable cation channels in non-excitable cells. Physiologically, TRPC channels are activated downstream receptor-dependent stimulation of phospholipases, either by store-operated or non-store operated mechanisms. TRPC3, a member of the TRPC3/6/7 subfamily, has been largely studied mostly due to its ability to function in one or the other modes, depending on cell type and expression conditions. The role of TRPC3 as a non-store operated channel has been attributed to its ability to respond to diacylglycerol (DAG) either exogenously applied or endogenously produced following activation of receptor-stimulated phospholipases. Despite the vast amount of information accumulated on this topic, some critical aspects related to phospholipase-dependent DAG-mediated regulation of TRPC3 remain unclear and/or unexplored. Among these, the source and species of native DAG, modulation by different DAG-generating phospholipases and protein kinase C-dependent inhibition of TRPC3 in its native environment are just few examples. The present essay is intended to compile existing knowledge on the nature of phospholipase-derived DAGs, their biophysical properties and current evidence on phospholipase-dependent regulation of TRPC3, to speculate on potential scenarios that may eventually provide answers to some of the above questions.  相似文献   

8.
Focal and segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome in children and adults throughout the world. In the past 50 years, significant advances have been made in the identification and characterization of familial forms of nephrotic syndrome and FSGS. Resultant to these pursuits, several podocyte structural proteins such as nephrin, podocin, alpha-actinin 4 (ACTN4), and CD2-associated protein (CD2AP) have emerged to provide critical insight into the pathogenesis of hereditary nephrotic syndromes. The latest advance in familial FSGS has been the discovery of a mutant form of canonical transient receptor potential cation channel 6 (TRPC6), which causes an increase in calcium transients and essentially a gain of function in this cation channel located on the podocyte cell membrane. The TRP ion channel family is a diverse group of cation channels united by a common primary structure which contains six membrane-spanning domains, with both carboxy and amino termini located intracellularly. TRP channels are unique in their ability to activate independently of membrane depolarization. TRPC6 channels have been shown to be activated via phospholipase C stimulation. The mechanisms by which mutant TRPC6 causes an increase in intracellular calcium and leads to glomerulosclerosis are unknown. Mutant TRPC6 may affect critical interactions with the aforementioned podocyte structural proteins, leading to abnormalities in the slit diaphragm or podocyte foot processes. Mutant TRPC6 may also amplify injurious signals mediated by Ang II, a common final pathway of podocyte apoptosis in various mammalian species. Current evidence also suggests that blocking TRPC6 channels may be of therapeutic benefit in idiopathic FSGS, a disease with a generally poor prognosis. Preliminary experiments reveal the commonly used immunosuppressive agent FK-506 can inhibit TRPC6 activity in vivo. This creates the exciting possibility that blocking TRPC6 channels within the podocyte may translate into long-lasting clinical benefits in patients with FSGS.  相似文献   

9.
Altered 1-oleoyl-lysophosphatidic acid (LPA, 100 microM)-stimulated calcium responses occur in B-lymphoblast cell lines from bipolar disorder patients, but the mechanism(s) involved is uncertain. Lysophosphatidic acid shares a structurally similar fatty acid side chain with the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a known activator of subtypes 3, 6 and 7 of the canonical transient receptor potential (TRPC) cation channel subfamily. Accordingly, the objective of this study was to determine whether the LPA-stimulated calcium response in B-lymphoblasts is mediated, in part, through this TRPC channel subfamily. Divalent cation selectivity in response to thapsigargin, LPA and OAG were used to distinguish TRPC-like character of the responses to these agents in BLCLs. The sensitivity to gadolinium, an inhibitor of capacitative calcium channels, was used to determine the store-operated nature of the responses. The TRPC isoforms that are present in BLCLs as identified by immunoblotting and/or PCR include TRPC1, 3 and 5. Minimal barium influx in calcium-free buffer was observed following thapsigargin stimulation. However, LPA stimulated barium influx of a magnitude similar to that induced by OAG. Thapsigargin-provoked calcium influx was completely inhibited by gadolinium (10 microM), whereas LPA and OAG-stimulated responses were partially inhibited and potentiated, respectively. The results suggest that 100 microM LPA stimulates calcium entry through channels with characteristics similar to TRPC3, as TRPC6 and 7 are absent in B-lymphoblasts.  相似文献   

10.
The mammalian transient receptor potential canonical (TRPC) group of channels is a family of Ca2+-permeable cation channels that are activated following receptor-mediated stimulation of different isoforms of phospholipase C. In vitro TRPC proteins can form hetero- or homo-oligomeric channels. We performed single-cell RT-PCR analysis to reveal the co-expression of seven TRPC channels in identified rat aminergic neurones. All serotonergic neurones of the dorsal raphe (DR), the majority of histaminergic (tuberomamillary nucleus; TMN) and dopaminergic cells of the ventral tegmental area (VTA), as well as some GABAergic neurones from the VTA, expressed at least one variant of TRPC channels. No TRPC channel expression was found in the locus coeruleus. In raphe neurones TRPC6 and TRPC5 mRNAs occurred most frequently. In VTA and TMN co-expression of TRPC4 with TRPC5 and TRPC6 with TRPC7 was not found in individual neurones (in contrast to the whole-brain regions). Their co-expression in non-neuronal cells could not be excluded. The neonatal TRPC3 subunit was rarely seen. In DR, but not in the other nuclei studied, the expression of orexin receptors correlated with the expression of TRPC channels. We conclude that several TRPC channel populations exist in individual neurones and that their subunit co-expression pattern is region and cell-type specific.  相似文献   

11.
Plant TD  Schaefer M 《Cell calcium》2003,33(5-6):441-450
The seven mammalian channels from the classical (TRPC) subfamily of transient receptor potential (TRP) channels are thought to be receptor-operated cation channels activated in a phospholipase C (PLC)-dependent manner. Based on sequence similarity, TRPC channels can be divided into four subgroups. Group 4 comprises TRPC4 and TRPC5, and is most closely related to group 1 (TRPC1). The functional properties observed following heterologous expression of TRPC4 or TRPC5 in mammalian cells are contradictory and, therefore, controversial. In our hands, and in several independent studies, both channels, probably as homotetramers, form receptor-operated, Ca2+-permeable, nonselective cation channels activated independently of inositol 1,4,5-trisphosphate (InsP(3)) receptor activation or Ca2+ store-depletion. As heteromultimers with TRPC1, TRPC4 and TRPC5 form receptor-operated, Ca2+-permeable, nonselective cation channels with biophysical properties distinct from homomeric TRPC4 or TRPC5. In other studies, TRPC4 and TRPC5 have been shown to be store-operated channels, with moderate to high Ca2+ permeabilities. At present there is no clear explanation for these major differences in functional properties. To date, little is known as to which native cation channels are formed by TRPC4 and TRPC5. Endothelial cells from TRPC4(-/-) mice lack a highly Ca2+-permeable, store-dependent current, and data support a role for TRPC4 in endothelium-mediated vasorelaxation. A similar current in adrenal cortical cells is reduced by TRPC4 antisense. From similarities in the properties of the currents and expression of appropriate isoforms in the tissues, it is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle.  相似文献   

12.
13.
The canonical transient receptor potential (TRPC) channels are a family of non-selective cation channels that are activated by increases in intracellular Ca(2+) and G(q)/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6-9 weeks). In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS), pyramidal cell layer of the hippocampus (HIP), dentate gyrus (DG), and ventral subiculum (vSUB). TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2-6 of the prefrontal cortex (PFC), motor cortex (MCx), and somatosensory cortex (SCx). TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca(2+)and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors.  相似文献   

14.
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 μm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 μm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.  相似文献   

15.
Phospholipase C signaling stimulates Ca2+ entry across the plasma membrane through multiple mechanisms. Ca2+ store depletion stimulates store-operated Ca2+-selective channels, or alternatively, other phospholipase C-dependent events activate Ca2+-permeable non-selective cation channels. Transient receptor potential 7 (TRPC7) is a non-selective cation channel that can be activated by both mechanisms when ectopically expressed, but the regulation of native TRPC7 channels is not known. We knocked out TRPC7 in DT40 B-cells, which expresses both forms of Ca2+ entry. No difference in the store-operated current I(crac) was detected between TRPC7-/- and wild-type cells. Wild-type cells demonstrated nonstore-operated cation entry and currents in response to activation of the B-cell receptor or protease-activated receptor 2, intracellular dialysis with GTPgammaS, or application of the synthetic diacylglycerol oleyl-acetyl-glycerol. These responses were absent in TRPC7-/- cells but could be restored by transfection with human TRPC7. In conclusion, in B-lymphocytes, TRPC7 appeared to participate in the formation of ion channels that could be activated by phospholipase C-linked receptors. This represents the first demonstration of a physiological function for endogenous TRPC7 channels.  相似文献   

16.
TRPC1 and TRPC5 form a novel cation channel in mammalian brain   总被引:43,自引:0,他引:43  
TRP proteins are cation channels responding to receptor-dependent activation of phospholipase C. Mammalian (TRPC) channels can form hetero-oligomeric channels in vitro, but native TRPC channel complexes have not been identified to date. We demonstrate here that TRPC1 and TRPC5 are subunits of a heteromeric neuronal channel. Both TRPC proteins have overlapping distributions in the hippocampus. Coexpression of TRPC1 and TRPC5 in HEK293 cells resulted in a novel nonselective cation channel with a voltage dependence similar to NMDA receptor channels, but unlike that of any reported TRPC channel. TRPC1/TRPC5 heteromers were activated by G(q)-coupled receptors but not by depletion of intracellular Ca(2+) stores. In contrast to the more common view of the TRP family as comprising store-operated channels, we propose that many TRPC heteromers form diverse receptor-regulated nonselective cation channels in the mammalian brain.  相似文献   

17.
The transient receptor potential (TRP) superfamily comprises a group of non-selective cation channels that have been implicated in both receptor and store-operated channel functions. The family of the classical TRPs (TRPCs) consists of seven members (TRPC1-7). The presence of TRPC1 and TRPC5 mRNA in the brain has previously been demonstrated by real-time polymerase chain reaction. However, the distribution of these receptors within different brain areas of mice has not been investigated in detail. We have used antibodies directed against TRPC1 and TRPC5 to study the distribution and localization of these channels in murine medial temporal lobe structures. Both TRPC1 and TRPC5 channels are present in the various nuclei of the amygdala, in the hippocampus, and in the subiculum and the entorhinal cortex. We have found that TRPC1 channels are primarily expressed on cell somata and on dendrites, whereas TRPC5 channels are exclusively located on cell bodies. Moreover, TRPC1 channels are selectively expressed by neurons, whereas TRPC5 channels are mainly expressed by neurons, but also by non-neuronal cells. The expression of TRPC1 and TRPC5 channels in mammalian temporal lobe structures suggests their involvement in neuronal plasticity, learning and memory. This work was supported by the DFG (SFB 636/A5).  相似文献   

18.
The seven mammalian channels from the classical (TRPC) subfamily of transient receptor potential (TRP) channels are thought to be receptor-operated cation channels activated in a phospholipase C (PLC)-dependent manner. Based on sequence similarity, TRPC channels can be divided into four subgroups. Group 4 comprises TRPC4 and TRPC5, and is most closely related to group 1 (TRPC1). The functional properties observed following heterologous expression of TRPC4 or TRPC5 in mammalian cells are contradictory and, therefore, controversial. In our hands, and in several independent studies, both channels, probably as homotetramers, form receptor-operated, Ca2+-permeable, nonselective cation channels activated independently of inositol 1,4,5-trisphosphate (InsP3) receptor activation or Ca2+ store-depletion. As heteromultimers with TRPC1, TRPC4 and TRPC5 form receptor-operated, Ca2+-permeable, nonselective cation channels with biophysical properties distinct from homomeric TRPC4 or TRPC5. In other studies, TRPC4 and TRPC5 have been shown to be store-operated channels, with moderate to high Ca2+ permeabilities. At present there is no clear explanation for these major differences in functional properties. To date, little is known as to which native cation channels are formed by TRPC4 and TRPC5. Endothelial cells from TRPC4−/− mice lack a highly Ca2+-permeable, store-dependent current, and data support a role for TRPC4 in endothelium-mediated vasorelaxation. A similar current in adrenal cortical cells is reduced by TRPC4 antisense. From similarities in the properties of the currents and expression of appropriate isoforms in the tissues, it is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle.  相似文献   

19.
Cardiovascular diseases are the leading cause of death in the industrialized countries. The cardiovascular system includes the systemic blood circulation, the heart and the pulmonary circulation providing sufficient blood flow and oxygen to peripheral tissues and organs according to their metabolic demand. This review focuses on three major cell types of the cardiovascular system: myocytes of the heart as well as smooth muscle cells and endothelial cells from the systemic and pulmonary circulation. Ion channels initiate and regulate contraction in all three cell types, and the identification of their genes has significantly improved our knowledge of signal transduction pathways in these cells. Among the ion channels expressed in smooth muscle cells, cation channels of the TRPC family allow for the entry of Na(+) and Ca(2+). Physiological functions of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 in the cardiovascular system, dissected by down-regulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models, are reviewed. Possible functional roles and physiological regulation of TRPCs as homomeric or heteromeric channels in these cell types are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes of the cardiovascular system like hypertension as well as cardiac hypertrophy and increased endothelial permeability.  相似文献   

20.
Transient receptor potential, TRP channels are a new superfamily of functionally versatile non-selective cation channels present from yeast to mammals. On the basis of their structural homology, TRP channels are subdivided in 7 groups : TRPC 1-7 Canonical, TRPV 1-6 Vanilloid, TRPM 1-8 Melastatin, TRPP 1-3 Polycystin, TRPML Mucolipin, TRPA Ankyrin and TRPN (NO mechanotransducer potential C), the latter not expressed in mammals. Their cloning and heterologous expression allowed to demonstrating that these channels are generally weakly voltage-dependent. They are activated by various ligands involving a signal transduction cascade as well as directly by multiple compounds, heat and pH. TRP channels are found in a broad range of cell types. TRP channels are essential in allowing animals to sense the outside world and cells to sense their local environment. Following mutations or anomalous behaviour, these channels have a major role in several human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号