首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
Hemichannels are large pore ion channels that in the traditional view are formed when half a gap connexin junction opens to the extracellular space. It is now evident that other ion channel families, including the newly discovered pannexin family can form channels with all the nascent properties of hemichannels. This suggests that hemichannels should now be defined to include members of non-connexin families. Several connexin, and two pannexins are expressed in neurons and astrocytes where they may function in release of ATP and glutamate. Additionally, pannexin-1 appears to play a role in neuronal death. Hemichannels form a novel and unique class of ion channels that likely have diverse physiological and pathophysiological roles in the nervous system.  相似文献   

2.
Connexin (Cx) proteins form intercellular gap junction channels by first assembling into single membrane hemichannels that then dock to connect the cytoplasm of two adjacent cells. Gap junctions are highly specialized structures that allow the direct passage of small molecules between cells to maintain tissue homeostasis. Functional activity of nonjunctional hemichannels has now been shown in several experimental systems. Hemichannels may constitute an important diffusional exchange pathway with the extracellular space, but the extent of their normal physiological role is currently unknown. Aberrant hemichannel activity has been linked to mutations of connexin proteins involved in genetic diseases. Here, we review a proposed role for hemichannels in the pathogenesis of Keratitis-Ichthyosis-Deafness (KID) syndrome associated with connexin26 (Cx26) mutations. Continued functional evaluation of mutated hemichannels linked to human hereditary disorders may provide additional insights into the mechanisms governing their regulation in normal physiology and dysregulation in disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

3.
Connexin (Cx) proteins form intercellular gap junction channels by first assembling into single membrane hemichannels that then dock to connect the cytoplasm of two adjacent cells. Gap junctions are highly specialized structures that allow the direct passage of small molecules between cells to maintain tissue homeostasis. Functional activity of nonjunctional hemichannels has now been shown in several experimental systems. Hemichannels may constitute an important diffusional exchange pathway with the extracellular space, but the extent of their normal physiological role is currently unknown. Aberrant hemichannel activity has been linked to mutations of connexin proteins involved in genetic diseases. Here, we review a proposed role for hemichannels in the pathogenesis of Keratitis–Ichthyosis–Deafness (KID) syndrome associated with connexin26 (Cx26) mutations. Continued functional evaluation of mutated hemichannels linked to human hereditary disorders may provide additional insights into the mechanisms governing their regulation in normal physiology and dysregulation in disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

4.
Hemichannels, which are one half of the gap junction channels, have independent physiological roles. Although hemichannels consisting of connexins are more widely documented, hemichannels of pannexins, proteins homologous to invertebrate gap junction proteins also have been studied. There are at least 21 different connexin and three pannexin isotypes. This variety in isotypes results in tissue-specific hemichannels, which have been implicated in varied events ranging from development, cell survival, to cell death. Hemichannel function varies with its spatio-temporal opening, thus demanding a refined degree of regulation. This review discusses the activity of hemichannels and the molecules released in different physiological states and their impact on tissue functioning.  相似文献   

5.
Intracellular calcium changes trigger connexin 32 hemichannel opening   总被引:9,自引:0,他引:9  
Connexin hemichannels have been proposed as a diffusion pathway for the release of extracellular messengers like ATP and others, based on connexin expression models and inhibition by gap junction blockers. Hemichannels are opened by various experimental stimuli, but the physiological intracellular triggers are currently not known. We investigated the hypothesis that an increase of cytoplasmic calcium concentration ([Ca2+]i) triggers hemichannel opening, making use of peptides that are identical to a short amino-acid sequence on the connexin subunit to specifically block hemichannels, but not gap junction channels. Our work performed on connexin 32 (Cx32)-expressing cells showed that an increase in [Ca2+]i triggers ATP release and dye uptake that is dependent on Cx32 expression, blocked by Cx32 (but not Cx43) mimetic peptides and a calmodulin antagonist, and critically dependent on [Ca2+]i elevation within a window situated around 500 nM. Our results indicate that [Ca2+]i elevation triggers hemichannel opening, and suggest that these channels are under physiological control.  相似文献   

6.
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   

7.
《FEBS letters》2014,588(8):1205-1211
Connexin hemichannels (connexons) are building blocks of gap junctions but also function as free unapposed channels, which has become an active field of research. Defining functions of hemichannels and their involvement in any biological event requires ruling out possible participation of other channels that share biophysical and regulatory properties, for example pannexins, CALHM1 and P2X receptors. The lack of specific inhibitors for these channels has become an obstacle in elucidating the role of connexin hemichannels. Several experimental approaches are now available to identify hemichannels at the cell surface and to characterize their electrophysiological, permeability and regulatory properties. The use of connexin knockout/knockdown, and the development of peptides that target intracellular connexin domains and specific antibodies directed to extracellular domains have helped to dissect the role of hemichannels in endogenously expressing systems. Moreover, studies of connexin mutants in exogenous expression systems have provided convincing evidence on hemichannels in the pathogenesis of several human genetic diseases. We here present a brief overview of connexin hemichannels as functional channels and itemize a list of aspects to consider when concluding on their involvement.  相似文献   

8.
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.  相似文献   

9.
Connexin-based gap junction hemichannels: gating mechanisms   总被引:13,自引:0,他引:13  
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   

10.
《FEBS letters》2014,588(8):1297-1303
The avascular lens of the eye is covered anteriorly by an epithelium containing nucleated, metabolically active cells. This epithelium contains the first lens cells to encounter noxious external stimuli and cells that can develop compensatory or protective responses. Lens epithelial cells express the gap junction proteins, connexin43 (Cx43) and connexin50 (Cx50). Cx43 and Cx50 form gap junction channels and hemichannels with different properties. Although they may form heteromeric hemichannels, Cx43 and Cx50 probably do not form heterotypic channels in the lens. Cx50 channels make their greatest contribution to intercellular communication during the early postnatal period; subsequently, Cx43 becomes the predominant connexin supporting intercellular communication. Although epithelial Cx43 appears dispensable for lens development, Cx50 is critical for epithelial cell proliferation and differentiation. Cx43 and Cx50 hemichannels and gap junction channels are regulated by multiple different agents. Lens epithelial cell connexins contribute to both normal lens physiology and pathology.  相似文献   

11.
Bone tissues respond to mechanical loading/unloading regimens to accommodate (re)modeling requirements; however, the underlying molecular mechanism responsible for these responses is largely unknown. Previously, we reported that connexin (Cx) 43 hemichannels in mechanosensing osteocytes mediate the release of prostaglandin, PGE(2), a crucial factor for bone formation in response to anabolic loading. We show here that the opening of hemichannels and release of PGE(2) by shear stress were significantly inhibited by a potent antibody we developed that specifically blocks Cx43-hemichannels, but not gap junctions or other channels. The opening of hemichannels and release of PGE(2) are magnitude-dependent on the level of shear stress. Insertion of a rest period between stress enhances this response. Hemichannels gradually close after 24 h of continuous shear stress corresponding with reduced Cx43 expression on the cell surface, thereby reducing any potential negative effects of channels staying open for extended periods. These data suggest that Cx43-hemichannel activity associated with PGE(2) release is adaptively regulated by mechanical loading to provide an effective means of regulating levels of extracellular signaling molecules responsible for initiation of bone (re)modeling.  相似文献   

12.
Gap junction (GJ) channels are formed by two hemichannels (connexons), each contributed by the cells taking part in this direct cell-cell communication conduit. Hemichannels that do not interact with their counterparts on neighboring cells feature as a release pathway for small paracrine messengers such as nucleotides, glutamate, and prostaglandins. Connexins are phosphorylated by various kinases, and we compared the effect of various kinase-activating stimuli on GJ channels and hemichannels. Using peptides identical to a short connexin (Cx) amino acid sequence to specifically block hemichannels, we found that protein kinase C, Src, and lysophosphatidic acid (LPA) inhibited GJs and hemichannel-mediated ATP release in Cx43-expressing C6 glioma cells (C6-Cx43). Lipopolysaccharide (LPS) and basic fibroblast growth factor (bFGF) inhibited GJs, but they stimulated ATP release via hemichannels in C6-Cx43. LPS and bFGF inhibited hemichannel-mediated ATP release in HeLa-Cx43 cells, but they stimulated it in HeLa-Cx43 with a truncated carboxy-terminal (CT) domain or in HeLa-Cx26, which has a very short CT. Hemichannel potentiation by LPS was inhibited by blockers of the arachidonic acid metabolism, and arachidonic acid had a potentiating effect like LPS and bFGF. We conclude that GJ channels and hemichannels display similar or oppositely directed responses to modulatory influences, depending on the balance between kinase activity and the activity of the arachidonic acid pathway. Distinctive hemichannel responses to pathological stimulation with LPS or bFGF may serve to optimize the cell response, directed at strictly controlling cellular ATP release, switching from direct GJ communication to indirect paracrine signaling, or maximizing cell-protective strategies.  相似文献   

13.
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.  相似文献   

14.
Connexins have been known to be the protein building blocks of gap junctions and mediate cell-cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed.  相似文献   

15.
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca2+ concentration and release of diverse metabolites (e.g., NAD+ and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.  相似文献   

16.
Jiang  Jean X.  Penuela  Silvia 《BMC cell biology》2016,17(1):105-120

Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.

  相似文献   

17.
Connexins are mechanosensitive   总被引:11,自引:0,他引:11  
Connexins form gap junction channels that provide a hydrophilic path between cell interiors. Some connexins, particularly the lens connexins, Cx46 and Cx50 and their orthologs, can form functional hemichannels in nonjunctional membranes. These hemichannels are a nonselective conduit to the extracellular medium and may jeopardize cell survival. The physiological function of hemichannels has remained elusive, but it has been postulated that hemichannels are involved in ATP-release caused by mechanical stimulation. Here we show with single-channel and whole cell electrophysiological studies that Cx46 hemichannels are mechanosensitive, like other families of ion channels and membrane-bound enzymes. The hemichannel response to mechanical stress is bipolar. At negative potentials stress opens the channel, and at positive potentials stress closes it. Physiologically, Cx46 hemichannels may assist accommodation of the ocular lens by providing a transient path for volume flow as the lens changes shape. mechanical stress; lens  相似文献   

18.
Connexins have been known to be the protein building blocks of gap junctions and mediate cell-cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed.  相似文献   

19.

Background

For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood.

Results

Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred.

Conclusion

This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.  相似文献   

20.
1. Hemichannels formed by connexin26 (Cx26) on the horizontal cell dendrites that invaginate cone terminals in the vertebrate retina have been implicated in the feedback mechanism by which horizontal cells regulate transmitter release from cone photoreceptors. However, their membrane properties had not been studied previously, and it was unclear whether they could subserve their purported function at the membrane potentials over which horizontal cells operate. 2. We used the two-electrode voltage clamp technique to record the membrane currents and pharmacological properties of Cx26 hemichannels formed in the Xenopus oocyte expression system. 3. Oocytes expressing Cx26 exhibited large membrane conductances over a broad range of hyperpolarizing and depolarizing membrane potentials, and displayed little evidence of voltage-dependent gating, indicating that the hemichannels are constitutively open. The Cx26-mediated nonjunctional currents were relatively insensitive to quinine, a cinchona alkaloid that opens hemichannels formed by several other connexins. However, the hemichannel currents were blocked by carbenoxolone, a rise in extracellular calcium, or lowering intracellular pH. The currents could also be suppressed by reducing extracellular pH, and by the chloride channel blocker NPPB through its direct interaction with Cx26 hemichannels. 4. These findings provide a basis with which to evaluate the in situ pharmacological studies that attempt to assess the putative role of Cx26 hemichannels in the feedback pathway in the distal retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号