首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen grains play important roles in the reproductive processes of flowering plants. The roles of apoplastic proteins in pollen germination and in pollen tube growth are comparatively less well understood. To investigate the functions of apoplastic proteins in pollen germination, the global apoplastic proteins of mature and germinated Arabidopsis thaliana pollen grains were prepared for differential analyses by using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) saturation labeling techniques. One hundred and three proteins differentially expressed (p value≤0.01) in pollen germinated for 6h compared with un-germination mature pollen, and 98 spots, which represented 71 proteins, were identified by LC-MS/MS. By bioinformatics analysis, 50 proteins were identified as secreted proteins. These proteins were mainly involved in cell wall modification and remodeling, protein metabolism and signal transduction. Three of the differentially expressed proteins were randomly selected to determine their subcellular localizations by transiently expressing YFP fusion proteins. The results of subcellular localization were identical with the bioinformatics prediction. Based on these data, we proposed a model for apoplastic proteins functioning in pollen germination and pollen tube growth. These results will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth.  相似文献   

2.
Proteome mapping of mature pollen of Arabidopsis thaliana   总被引:6,自引:0,他引:6  
  相似文献   

3.
花粉蛋白质组学研究进展   总被引:1,自引:0,他引:1  
戴绍军 《植物学报》2007,24(3):319-329
花粉是高度退化的生物体(雄配子体), 在植物有性生殖过程中具有重要作用。解析花粉发育、花粉-柱头识别、萌发和花粉管生长等细胞学过程的分子机制是当前研究的热点问题之一。近年来, 应用高通量的蛋白质组学技术平台, 对水稻、拟南芥和裸子植物花粉的蛋白质组学研究揭示了花粉中表达蛋白质的功能类群特征。花粉中参与细胞壁代谢、蛋白质代谢、细胞骨架动态和信号转导的蛋白质被高度代表, 并且近1/4蛋白质有多个同工型。本文综述了花粉蛋白质组学的研究进展。  相似文献   

4.
5.
6.
The identification of proteins involved in pollen germination and tube growth is important for fundamental studies of fertility and reproduction in flowering plants. We used 2-DE and MALDI-TOF-MS to identify differentially expressed proteins in mature (P0) and 1-h germinated (P1) maize pollen. Among about 470 proteins separated in 2D gels, the abundances of 26 protein spots changed (up- or down-regulation) between P0 and P1. The 13 up-regulated protein spots were mainly involved in tube wall modification, actin cytoskeleton organization, energy metabolism, signaling, protein folding and degradation. In particular, pectin methylesterase, inorganic pyrophosphatase, glucose-1-phosphate uridylyltransferase and rab GDP dissociation inhibitor α are highly up-regulated, suggesting their potential role in pollen tube growth. The down-regulated 13 protein spots mainly include defense-related proteins, pollen allergens and some metabolic enzymes. This study would contribute to the understanding of the changes in protein expression associated with pollen tube development.  相似文献   

7.
Fernando DD 《Proteomics》2005,5(18):4917-4926
The differentially expressed proteins in pollen tubes indicate their specific roles in this stage of male gametophyte development. To isolate these proteins, 2-DE was done using ungerminated pollen and 2-day-old pollen tubes of Pinus strobus. Results show that 645 and 647 protein spots were clearly resolved from pollen grains and pollen tubes, respectively. Thirty-eight protein spots were expressed only in pollen tubes, while 19 increased in intensity. MALDI-TOF MS was used to generate tryptic peptide masses that were submitted to Mascot for identification. Of the differentially expressed proteins, 12% matched with hypothetical proteins, 33% did not hit any protein, and for the 55%, a putative function was assigned based on similarity of sequences with previously characterized proteins. Therefore, pollen tube development can be characterized by the cellular activities that involve metabolism, stress/defense response, gene regulation, signal transduction, and cell wall formation. This study expands our understanding of the changes in protein expression associated with pollen tube development and provides insights into the molecular programs that separate the development of the pollen tubes from pollen grains. This is the first report that describes a global analysis of differentially expressed proteins from the pollen tube of any seed plant.  相似文献   

8.
SHY, a pollen-specific gene identified in a screen for genes upregulated at pollen germination, encodes a leucine-rich repeat (LRR) protein that is predicted to be secreted. To test if SHY plays an important role during pollen germination, we generated transgenic plants expressing an antisense (AS) copy of the SHY cDNA in pollen. Primary transformants exhibited poor seed set, but homozygous lines could be identified. In these lines, nearly all pollen tubes failed to reach the ovules; tube growth was arrested at the apex of the ovary and the pollen tubes exhibited abnormal callose deposits throughout the tube and in the tips. We show that a SHY::eGFP fusion protein is targeted to the cell wall. The structure of the SHY protein is nearly identical to other extracellular matrix glycoproteins that are composed of LRRs, such as the polygalacturonase inhibitor proteins (PGIP) of plants. PGIPs may function as defense proteins by inhibiting fungal endo-polygalacturonases, but enzyme assays with extracts of AS-SHY pollen do not support such an inhibitor role for SHY. The tomato ortholog of SHY interacts with a tomato receptor kinase (LePRK2) in yeast two-hybrid and pull-down assays; this, and the AS-SHY phenotypes, suggest instead that SHY might function in a signal transduction pathway mediating pollen tube growth.  相似文献   

9.
The function of actin-binding proteins in pollen tube growth   总被引:4,自引:0,他引:4  
Ren H  Xiang Y 《Protoplasma》2007,230(3-4):171-182
Pollen tube growth is a key step in sexual reproduction of higher plants. The pollen tube is a typical example of tip-growing cells and shows a polarized cytoplasm. To develop and maintain polarized growth, pollen tubes need a carefully regulated actin cytoskeleton. It is well known that actin-binding proteins are responsible for the direct control of dynamic actin filaments and serve as a link between signal transduction pathways and dynamic actin changes in determining cellular architecture. Several of these classes have been identified in pollen tubes and their detailed characterisation is progressing rapidly. Here, we aim to survey what is known about the major actin-binding proteins that affect actin assembly and dynamics, and their higher-order organisation in pollen tube growth.  相似文献   

10.
戴绍军 《植物学通报》2007,24(3):319-329
花粉是高度退化的生物体(雄配子体),在植物有性生殖过程中具有重要作用。解析花粉发育、花粉-柱头识别、萌发和花粉管生长等细胞学过程的分子机制是当前研究的热点问题之一。近年来,应用高通量的蛋白质组学技术平台,对水稻、拟南芥和裸子植物花粉的蛋白质组学研究揭示了花粉中表达蛋白质的功能类群特征。花粉中参与细胞壁代谢、蛋白质代谢、细胞骨架动态和信号转导的蛋白质被高度代表,并且近1/4蛋白质有多个同工型。本文综述了花粉蛋白质组学的研究进展。  相似文献   

11.
12.
蛋白质可逆磷酸化对花粉管生长的调控作用   总被引:1,自引:0,他引:1  
索金伟  戴绍军 《遗传》2014,36(8):766-778
花粉管极性生长受多种信号与代谢过程的调控,主要包括Rop GTPase信号途径、磷脂酰肌醇信号通路、Ca2+信号途径、肌动蛋白动态变化、囊泡运输、细胞壁重塑等,这些过程都受到蛋白质可逆磷酸化作用的调节。如:(1) Rop调节蛋白(GEF、GDI和GAP)的可逆磷酸化可以改变其活性,从而调节Rop GTPase;同时,蛋白激酶还可能作为Rop下游的效应器分子参与Rop下游信号途径的调节;(2) 蛋白质可逆磷酸化作用既能够激活/失活质膜上的Ca2+通道或Ca2+泵,又参与调节胞内贮存Ca2+的释放,从而调控花粉管尖端Ca2+梯度的形成;此外,蛋白激酶还作为Ca2+信号的感受器,磷酸化相应的靶蛋白,参与Ca2+信号下游途径的调节;(3) 肌动蛋白结合蛋白(ADF和Profilin)的活性也受到蛋白质可逆磷酸化的调节,进而调控肌动蛋白聚合与解聚之间的动态平衡;(4) 蛋白质磷酸化作用调节胞吞/胞吐相关蛋白的活性,并调控质膜的磷脂代谢,从而参与调控囊泡运输过程;(5) 胞质丝氨酸/苏氨酸蛋白激酶和蔗糖合酶的可逆磷酸化可以调节其在花粉管中的功能与分布模式,参与花粉管细胞壁重塑;(6) 转录调节蛋白与真核生物翻译起始因子的可逆磷酸化可以改变其活性,从而调控RNA转录与蛋白质合成。文章主要综述了花粉管生长过程中重要蛋白质的可逆磷酸化作用对上述关键事件的调节。  相似文献   

13.
14.
The surface of a pollen grain consists of an outermost coat and an underlying wall. In maize (Zea mays L.), the pollen coat contains two major proteins derived from the adjacent tapetum cells in the anthers. One of the proteins is a 35-kDa endoxylanase (Wu, S. S. H., Suen, D. F., Chang, H. C., and Huang, A. H. C. (2002) J. Biol. Chem. 277, 49055-49064). The other protein of 70 kDa was purified to homogeneity and shown to be a beta-glucanase. Its gene sequence and the developmental pattern of its mRNA differ from those of the known beta-glucanases that hydrolyze the callose wall of the microspore tetrad. Mature pollen placed in a liquid medium released about nine major proteins. These proteins were partially sequenced and identified via GenBank trade mark data bases, and some had not been previously reported to be in pollen. They appear to have wall-loosening, structural, and enzymatic functions. A novel pollen wall-bound protein of 17 kDa has a unique pattern of cysteine distribution in its sequence (six tandem repeats of CX3CX10-15) that could chelate cations and form signal-receiving finger motifs. These pollen-released proteins were synthesized in the pollen interior, and their mRNA increased during pollen maturation and germination. They were localized mainly in the pollen tube wall. The pollen shell was isolated and found to contain no detectable proteins. We suggest that the pollen-coat beta-glucanase and xylanase hydrolyze the stigma wall for pollen tube entry and that the pollen secrete proteins to loosen or become new wall constituents of the tube and to break the wall of the transmitting track for tube advance.  相似文献   

15.
TPLATE was previously identified as a potential cytokinesis protein targeted to the cell plate. Disruption of TPLATE in Arabidopsis thaliana leads to the production of shriveled pollen unable to germinate. Vesicular compartmentalization of the mature pollen is dramatically altered, and large callose deposits accumulate near the intine cell wall layer. Green fluorescent protein (GFP)-tagged TPLATE expression under the control of the pollen promoter Lat52 complements the phenotype. Downregulation of TPLATE in Arabidopsis seedlings and tobacco (Nicotiana tabacum) BY-2 suspension cells results in crooked cell walls and cell plates that fail to insert into the mother wall. Besides accumulating at the cell plate, GFP-fused TPLATE is temporally targeted to a narrow zone at the cell cortex where the cell plate connects to the mother wall. TPLATE-GFP also localizes to subcellular structures that accumulate at the pollen tube exit site in germinating pollen. Ectopic callose depositions observed in mutant pollen also occur in RNA interference plants, suggesting that TPLATE is implicated in cell wall modification. TPLATE contains domains similar to adaptin and beta-COP coat proteins. These data suggest that TPLATE functions in vesicle-trafficking events required for site-specific cell wall modifications during pollen germination and for anchoring of the cell plate to the mother wall at the correct cortical position.  相似文献   

16.
17.
18.
Two low-molecular-weight proteins have been purified from Brassica napus pollen and a gene corresponding to one of them has been isolated. The gene encodes an 8.6-kD protein with two EF-hand calcium-binding motifs and is a member of a small gene family in B. napus. The protein is part of a family of pollen allergens recently identified in several evolutionarily distant dicot and monocot plants. Homologs have been detected in Arabidopsis, from which one gene has been cloned in this study, and in snapdragon (Antirrhinum majus), but not in tobacco (Nicotiana tabacum). Expression of the gene in B. napus was limited to male tissues and occurred during the pollen-maturation phase of anther development. Both the B. napus and Arabidopsis proteins interact with calcium, and the potential for a calcium-dependent conformational change was demonstrated. Given this affinity for calcium, the cloned genes were termed BPC1 and APC1 (B. napus and Arabidopsis pollen calcium-binding protein 1, respectively). Immunolocalization studies demonstrated that BPC1 is found in the cytosol of mature pollen. However, upon pollen hydration and germination, there is some apparent leakage of the protein to the pollen wall. BPC1 is also concentrated on or near the surface of the elongating pollen tube. The essential nature of calcium in pollen physiology, combined with the properties of BPC1 and its high evolutionary conservation suggests that this protein plays an important role in pollination by functioning as a calcium-sensitive signal molecule.  相似文献   

19.
Sucrose synthase is associated with the cell wall of tobacco pollen tubes   总被引:1,自引:1,他引:0  
Sucrose synthase (Sus; EC 2.4.1.13) is a key enzyme of sucrose metabolism in plant cells, providing carbon for respiration and for the synthesis of cell wall polymers and starch. Since Sus is important for plant cell growth, insights into its structure, localization, and features are useful for defining the relationships between nutrients, growth, and cell morphogenesis. We used the pollen tube of tobacco (Nicotiana tabacum) as a cell model to characterize the main features of Sus with regard to cell growth and cell wall synthesis. Apart from its role during sexual reproduction, the pollen tube is a typical tip-growing cell, and the proper construction of its cell wall is essential for correct shaping and direction of growth. The outer cell wall layer of pollen tubes consists of pectins, but the inner layer is composed of cellulose and callose; both polymers require metabolic precursors in the form of UDP-glucose, which is synthesized by Sus. We identified an 88-kD polypeptide in the soluble, plasma membrane and Golgi fraction of pollen tubes. The protein was also found in association with the cell wall. After purification, the protein showed an enzyme activity similar to that of maize (Zea mays) Sus. Distribution of Sus was affected by brefeldin A and depended on the nutrition status of the pollen tube, because an absence of metabolic sugars in the growth medium caused Sus to distribute differently during tube elongation. Analysis by bidimensional electrophoresis indicated that Sus exists as two isoforms, one of which is phosphorylated and more abundant in the cytoplasm and cell wall and the other of which is not phosphorylated and is specific to the plasma membrane. Results indicate that the protein has a role in the construction of the extracellular matrix and thus in the morphogenesis of pollen tubes.  相似文献   

20.
L Ma  X Xu  S Cui    D Sun 《The Plant cell》1999,11(7):1351-1364
The role of heterotrimeric G proteins in pollen germination, tube growth, and signal transduction of extracellular calmodulin (CaM) was examined in lily pollen. Two kinds of antibodies raised against animal Gzalpha, one against an internal sequence and the other against its N terminus, cross-reacted with the same 41-kD protein from lily pollen plasma membrane. This 41-kD protein was also specifically ADP ribosylated by pertussis toxin. Microinjection of the membrane-impermeable G protein agonist GTP-gamma-S into a pollen tube increased its growth rate, whereas microinjection of the membrane-impermeable G protein antagonist GDP-beta-S and the anti-Galpha antibody decreased pollen tube growth. The membrane-permeable G protein agonist cholera toxin stimulated pollen germination and tube growth. Anti-CaM antiserum inhibited pollen germination and tube growth, and this inhibitory effect was completely reversed by cholera toxin. The membrane-permeable heterotrimeric G protein antagonist pertussis toxin completely stopped pollen germination and tube growth. Purified CaM, when added directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in plasma membrane vesicles, and this increase in GTPase activity was completely inhibited by pertussis toxin and the nonhydrolyzable GTP analogs GTP-gamma-S and guanylyl-5'-imidodiphosphate. The GTPase activity in plasma membrane vesicles was also stimulated by cholera toxin. These data suggest that heterotrimeric G proteins may be present in the pollen system where they may be involved in the signal transduction of extracellular CaM and in pollen germination and tube growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号