首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scheme for optimizing configurations in models of skeletal structures is presented. Use of the scheme is illustrated through determination of biomechanically optimal correction of a right-thoracic scoliosis by passive brace and active muscle forces. The locations and magnitudes of the passive brace forces, and the trunk muscle groups and their corresponding contraction intensity magnitudes that would optimally correct the geometric deformities of the spine were determined. The results suggest that, from a biomechanical viewpoint, both brace and muscle forces are capable of substantial correction of a model thoracic scoliosis. However, comparison of model results with long-term clinical results suggests that even under optimal conditions it is unlikely that scoliosis can be fully corrected by passive brace forces or active muscle contractions.  相似文献   

2.

Study design

A prospective treatment study with a new brace was conducted Objective. To evaluate radiological and subjective clinical results after one year conservative brace treatment with pressure onto lordosis at the thoracolumbar joint in children with scoliosis and kyphosis.

Summary of background data

Conservative brace treatment of adolescent scoliosis is not proven to be effective in terms of lasting correction. Conservative treatment in kyphotic deformities may lead to satisfactory correction. None of the brace or casting techniques is based on sagittal forces only applied at the thoracolumbar spine (TLI= thoracolumbar lordotic intervention). Previously we showed in patients with scoliosis after forced lordosis at the thoracolumbar spine a radiological instantaneous reduction in both coronal curves of double major scoliosis.

Methods

A consecutive series of 91 children with adolescent scoliosis and kyphosis were treated with a modified symmetric 30 degrees Boston brace to ensure only forced lordosis at the thoracolumbar spine. Scoliosis was defined with a Cobb angle of at least one of the curves [greater than or equal to] 25 degrees and kyphosis with or without a curve <25 degrees in the coronal plane. Standing radiographs were made i) at start, ii) in brace at beginning and iii) after one year treatment without brace.

Results

Before treatment start ??in brace?? radiographs showed a strong reduction of the Cobb angles in different curves in kyphosis and scoliosis groups (sagittal n = 5 all p < 0.001, pelvic obliquity p < 0.001). After one year of brace treatment in scoliosis and kyphosis group the measurements on radiographs made without brace revealed an improvement in 3 Cobb angles each.

Conclusion

Conservative treatment using thoracolumbar lordotic intervention in scoliotic and kyphotic deformities in adolescence demonstrates a marked improvement after one year also in clinical and postural criteria. An effect not obtained with current brace techniques.  相似文献   

3.
Ventral derotation spondylodesis (VDS) is the standard in ventral scoliosis surgery. Especially in the thoracic spine, there are no alternatives to VDS with compression and derotation as its correction forces. However, pull-out of the end-vertebra screw during correction of scoliosis with the VDS implant is a common complication involving particularly the cranial end-vertebra screw in the thoracic region. This complication requires an extension of the fusion length or reduces at least the outcome of the correction. There are no in vivo data on correction forces in ventral scoliosis surgery. Thus the correction depends on the skill and experience of the surgeon. An instrumented forceps developed and built to measure forces in the longitudinal rod allows axial tensile forces to be determined in the longitudinal rod during surgery. The instrumented forceps has the advantage of reducing the risk of screw pull-out. Furthermore, viscoelastic behavior of the spine can be measured during ventral correction. In addition, knowledge of the correction forces improves our biomechanical understanding of the spine, especially during correction of scoliosis. Intraoperative force measurement is in no way detrimental to the patient.  相似文献   

4.

Background

Although most idiopathic scoliosis patients subject to conservative treatment in daily clinical practice, there have been no ideal methods to evaluate the spinal flexibility for the patients who are scheduled the brace treatment. The purpose of this study was to investigate the value of hanging total spine x-ray to estimate the indicative correction angle by brace wearing in idiopathic scoliosis patients.

Methods

One hundred seventy-six consecutive patients with idiopathic scoliosis who were newly prescribed the Osaka Medical College (OMC) brace were studied. The study included 14 boys and 162 girls with a mean age of 13 years and 1 month. The type of curves consisted of 62 thoracic, 23 thoracolumbar, 22 lumbar, 42 double major, 14 double thoracic, and 13 triple curve pattern. We compared the Cobb angles on initial brace wearing (BA) and in hanging position (HA). Of those, 108 patients who had main thoracic curves were selected and evaluated the corrective ability of OMC brace. These subjects were divided into three groups according to the relation between BA and HA (BA < HA group, BA = HA group, and BA > HA group), and then, maturity was compared among them.

Results

The average Cobb angle in upright position (UA) of all cases was 31.0 ± 7.8°. The average BA and HA of all cases were 20.3 ± 9.5° and 21.1 ± 8.4°, respectively. The average chronological age was lowest in BA < HA group. And also, maturity in BA < HA group was the lowest among each of them. The rate of BA < HA cases were decreased as the Risser stage of the patients were progressed.

Conclusions

The use of hanging total spine x-ray served as a useful tool to estimate the degree of correction possible curve within the OMC brace for main thoracic curve in idiopathic scoliosis. Maturity had some influence on the correlation between HA and BA. Namely, in immature patients, HA tended to be larger than BA. In contrast, in mature patients, HA had a tendency to be smaller than BA. With consideration for spinal flexibility based on maturity, in mature patients, larger BA than HA may be allowed. However, in immature patients, smaller BA than HA should be aimed.  相似文献   

5.
Adolescent idiopathic scoliosis involves complex tridimensional deformities of the spine, rib cage and pelvis. Moderate curves generally are treated using an orthosis. This paper presents different studies performed over the last fifteen years related to the biomechanical evaluation and optimization of the orthopedic treatment of scoliotic deformities. Patient specific 3D models of the spine, pelvis and rib cage are computed from calibrated radiographs, and are used to calculate 2D and 3D clinical indices. The torso shape is acquired using surface topography. With such internal and external 3D models, the efficacy of the most frequently used orthoses can be analyzed and new treatments can be developed. Pressures generated by a brace on the patient's trunk were measured using a flexible matrix of pressure sensors and displayed over the patient's internal geometry in order to analyze the brace efficacy. Patient specific finite element models have been developed, including the osseo-ligamentous structures as well as the muscles, the neuro-control, trunk growth and its adaptation to the stress. These models were used to analyze the effects of the Boston brace. The electro-myographic activity also was measured to analyze the < active > correction mechanisms. Adjustment techniques and software are used to help the orthotists with real time feedback when the brace is being fabricated and adjusted to the patient. Residual growth potential is also being added to the computer model to simulate the long term effect of a brace. The improvement of the orthotic treatments of scoliotic deformities is very encouraging. The exploitation of such tools is expected to allow reaching optimal treatment personalized to each patient. double dagger.  相似文献   

6.
7.
Under vibration stress the compressive forces transmitted in the joints of a standing operator are composed of nearly static and oscillating force parts. Because these forces can hardly be measured they were assessed by means of a biomechanical model. In the model, 27 rigid bodies with 103 degrees of freedom represent the segments of the human body. 106 force elements imitate the muscles of the trunk and the legs. At first, the model parameter were varied so that for the simulated sitting posture the model fits the seat-to-head transmissibility given in the literature and in ISO/CD 5982. For the standing posture, the transfer functions between the ground acceleration and the oscillating forces in the ankle, the knee, the hip, and the motion segment L3-L4 were computed. According to the moduli of these functions the forces in the ankles are higher than those in the knees or the hips and they nearly come up to the forces in the lumbar spine. Further the results of the simulation indicate that under equal vibration stress in the standing and the sitting posture the differences between the compressive forces in the lumbar spine are small.  相似文献   

8.
There is a lack of clear biomechanical analyses to explain the interaction of the lateral and axial deformity of the spine in idiopathic scoliosis. A finite element model which represented an isolated ligamentous spine with realistic elastic properties and idealized geometry was used to analyse this interaction. Three variations of this model were used to investigate two different hypotheses about the etiology of scoliosis and to define the forces required to produce a scoliosis deformity. The first hypothesis is that coupling within a motion segment produces the interaction between lateral deviation and axial rotation. The second hypothesis is that posterior tethering by soft tissues in the growing spine produces the observed interaction. Modeling of both hypotheses failed to produce the clinically observed pattern of interaction. Therefore, to find which biomechanical forces were required to produce an idealized scoliosis, prescribed displacements were applied to the model. Production of a double curve scoliosis of 10 degrees Cobb angles required lateral forces on the order of 20 N acting 40 mm anterior to the vertebral body centers. There do not appear to be any anatomic structures capable of producing such forces. Therefore, it seems unlikely that scoliosis deformity can be explained in terms of forces acting on the spine, and understanding of its origins may come from examination of other mechanisms such as asymmetric thoracic growth, or asymmetric vertebral development.  相似文献   

9.
10.
Muscle force partitioning methods and musculoskeletal system simplifications are key modeling issues that can alter outcomes, and thus change conclusions and recommendations addressed to health and safety professionals. A critical modeling concern is the use of single-joint equilibrium to estimate muscle forces and joint loads in a multi-joint system, an unjustified simplification made by most lumbar spine biomechanical models. In the context of common occupational tasks, an EMG-assisted optimization method (EMGAO) is modified in this study to simultaneously account for the equilibrium at all lumbar joints (M-EMGAO). The results of this improved approach were compared to those of its conventional single-joint equivalent (S-EMGAO) counterpart, the latter method being applied to the same lumbar joints but one at a time. Despite identical geometrical configurations and passive contributions used in both models, computed outcomes clearly differed between single- and multi-joint methods, especially at larger trunk flexed postures and during asymmetric lifting. Moreover, muscle forces predicted by L5-S1 single-joint analyses do not maintain mechanical equilibrium at other spine joints crossed by the same muscles. Assuming that the central nervous system does not attempt to balance the external moments one joint at a time and that a given muscle cannot exert different forces at different joints, the proposed multi-joint method represents a substantial improvement over its single-joint counterpart. This improved approach, hence, resolves trunk muscle forces with biological integrity but without compromising mechanical equilibrium at the lumbar joints.  相似文献   

11.

Background

The shape of the torso in patients with idiopathic scoliosis is considered to reflect the shape of the vertebral column, however the direct correlation between parameters describing clinical deformity and those characterizing radiological curvature was reported to be weak. It is not clear if the management proposed for scoliosis (physiotherapy, brace, surgery) affects equally the shape of the axial skeleton and the surface of the body. The aim of the study was to compare clinical deformity of (1) idiopathic scoliosis girls being under brace treatment for radiological curves of 25 to 40 degrees and (2) non treated scoliotic girls matched for age and Cobb angle.

Methods

Cross-sectional study of 24 girls wearing the brace versus 26 girls without brace treatment, matched for age and Cobb angle. Hypothesis: Patients wearing the brace for more than 6 months, when comparing to patients without brace, may present different external morphology of the trunk, in spite of having similar Cobb angle. Material. Inclusion criteria: girls, idiopathic scoliosis, growing age (10–16 years), Cobb angle minimum 25°, maximum 40°. The braced group consisted of girls wearing a TLSO brace (Cheneau) for more than 6 months with minimum of 16 hours per day. The non-braced group consisted of girls first seen for their spinal deformity, previously not treated. The groups presented similar curve pattern. Methods. Scoliometer exam: angle of trunk rotation at three levels of the spine: upper thoracic, main thoracic, lumbar or thoracolumbar. The maximal angle was noted at each level and the sum of three levels was calculated. Posterior trunk symmetry index (POTSI) and Hump Sum were measured using surface topography.

Results

Cobb angle was 34.9° ± 4.8° in braced and 32.7° ± 4.9° in un-braced patients (difference not significant). The age was 14.1 ± 1.6 years in braced patients and 13.1 ± 1.9 years in un-braced group (p = 0.046). The value of angle of trunk rotation in the main curvature was 8.4° ± 2.7°in braced and 11.4° ± 2.7° in un-braced patients (difference extremely significant, p = 0.0003). The value of the sum of angles of trunk rotation at three levels of the trunk was 12.8° ± 4.6° in braced and 16.5° ± 3.8° in un-braced patients (difference very significant, p = 0.0038). The POTSI did not differ significantly between the groups (p = 0.78), the Hump Sum values were not quite different (p = 0.07).

Conclusion

(1) Adolescent girls wearing the brace for idiopathic scoliosis of 25 to 40 degrees of Cobb angle, reveal smaller clinical rotational deformity of their back than non-treated girls having similar radiological deformity. (2) evaluation of the results of treatment for idiopathic scoliosis should consider parameters describing both clinical and radiological deformity.  相似文献   

12.
Abstract The purpose of this study was to introduce infinite models in scoliosis and to analyze personal experience. Based on a three-dimensional patient-specific finite element model of the spine, rib cage, pelvis and abdomen, a parametric individual model of a thoracolumbosacral orthosis was built. Three standard strap tensions (20, 40, 60 N) were loaded on the back of the brace to simulate the strap tension. The I-Scan distribution pressure measurement system was used to measure the pressure of the different regions and the equivalent forces in these regions were calculated. The spinal curve changes and the forces acted on the brace generated by the strap tension were evaluated and compared with the measurement results. The reduction of the coronal curvature was approximately 60% for a strap tension of 60 N. The sacral slope and the lordosis were partially reduced in this case. The brace modified the axial rotation at the deformed vertebrae. The forces generated in finite element analysis were in good agreement with the measurement. The findings supported the feasibility of such an approach to analyze individual bracing biomechanics, which may be useful in the design of more effective individual braces.  相似文献   

13.
14.
Scoliosis is defined as a spinal pathology characterized as a three-dimensional deformity of the spine combined with vertebral rotation. Treatment for severe scoliosis is achieved when the scoliotic spine is surgically corrected and fixed using implanted rods and screws. Several studies performed biomechanical modeling and corrective forces measurements of scoliosis correction. These studies were able to predict the clinical outcome and measured the corrective forces acting on screws, however, they were not able to measure the intraoperative three-dimensional geometry of the spinal rod. In effect, the results of biomechanical modeling might not be so realistic and the corrective forces during the surgical correction procedure were intra-operatively difficult to measure. Projective geometry has been shown to be successful in the reconstruction of a three-dimensional structure using a series of images obtained from different views. In this study, we propose a new method to measure the three-dimensional geometry of an implant rod using two cameras. The reconstruction method requires only a few parameters, the included angle θ between the two cameras, the actual length of the rod in mm, and the location of points for curve fitting. The implant rod utilized in spine surgery was used to evaluate the accuracy of the current method. The three-dimensional geometry of the rod was measured from the image obtained by a scanner and compared to the proposed method using two cameras. The mean error in the reconstruction measurements ranged from 0.32 to 0.45 mm. The method presented here demonstrated the possibility of intra-operatively measuring the three-dimensional geometry of spinal rod. The proposed method could be used in surgical procedures to better understand the biomechanics of scoliosis correction through real-time measurement of three-dimensional implant rod geometry in vivo.  相似文献   

15.
16.
Many patients with low back and/or pelvic girdle pain feel relief after application of a pelvic belt. External compression might unload painful ligaments and joints, but the exact mechanical effect on pelvic structures, especially in (active) upright position, is still unknown. In the present study, a static three-dimensional (3-D) pelvic model was used to simulate compression at the level of anterior superior iliac spine and the greater trochanter. The model optimised forces in 100 muscles, 8 ligaments and 8 joints in upright trunk, pelvis and upper legs using a criterion of minimising maximum muscle stress. Initially, abdominal muscles, sacrotuberal ligaments and vertical sacroiliac joints (SIJ) shear forces mainly balanced a trunk weight of 500N in upright position. Application of 50N medial compression force at the anterior superior iliac spine (equivalent to 25N belt tension force) deactivated some dorsal hip muscles and reduced the maximum muscle stress by 37%. Increasing the compression up to 100N reduced the vertical SIJ shear force by 10% and increased SIJ compression force with 52%. Shifting the medial compression force of 100N in steps of 10N to the greater trochanter did not change the muscle activation pattern but further increased SIJ compression force by 40% compared to coxal compression. Moreover, the passive ligament forces were distributed over the sacrotuberal, the sacrospinal and the posterior ligaments. The findings support the cause-related designing of new pelvic belts to unload painful pelvic ligaments or muscles in upright posture.  相似文献   

17.
High anterior intervertebral shear loads could cause low back injuries and therefore the neuromuscular system may actively counteract these forces. This study investigated whether, under constant moment loading relative to L3L4, an increased externally applied forward force on the trunk results in a shift in muscle activation towards the use of muscles with more backward directed lines of action, thereby reducing the increase in total joint shear force. Twelve participants isometrically resisted forward forces, applied at several locations on the trunk, while moments were held constant relative to L3L4. Surface EMG and lumbar curvature were measured, and an EMG-driven muscle model was used to calculate compression and shear forces at all lumbar intervertebral joints. Larger externally applied forward forces resulted in a flattening of the lumbar lordosis and a slightly more backward directed muscle force. Furthermore, the overall muscle activation increased. At the T12L1 to L3L4 joint, resulting joint shear forces remained small (less than 200N) because the average muscle force pulled backward relative to those joints. However, at the L5S1 joint the average muscle force pulled the trunk forward so that the increase in muscle force with increasing externally applied forward force caused a further rise in shear force (by 102.1N, SD=104.0N), resulting in a joint shear force of 1080.1N (SD=150.4N) at 50Nm moment loading. It is concluded that the response of the neuromuscular system to shear force challenges tends to increase rather than reduce the shear loading at the lumbar joint that is subjected to the highest shear forces.  相似文献   

18.

Objective

To quantify and compare the forces exerted by scoliosis patients in fiberglass braces during exercises usually prescribed in departments where casts are made. The exercises are intended to increase corrective forces, activate muscles, stimulate ventilation and help the patient psychologically.

Setting

Outpatient care.

Patients

17 consecutive adolescent patients wearing fiberglass brace for idiopathic scoliosis.

Interventions

Exercises (kyphotization, rotation, "escape from the pad") in different positions (sitting, supine, on all fours).

Main outcome measure

Pressure detected by the F-Socket System between the rib hump and the pad of the brace.

Results

In static and dynamic conditions, the position adopted did not alter the total pressure exerted by the brace, although the part of the sensor stimulated did vary. Kyphotization and rotation exercises produced a significant increase of pressure (+ 58.9% and +29.8%, respectively); however, the "escape from the pad" exercise, despite its name, did not produce any significant variation of pressure.

Conclusion

Exercises in the brace allow adjunctive forces to be applied on soft tissues and through them, presumably on the spine. Different exercises can be chosen to obtain different actions. Physical exercises and sporting activities are useful in mechanical terms, although other important actions should not be overlooked.  相似文献   

19.
目的:对比一期后路半椎体切除短节段植骨融合内固定术与一期前路半椎体切除短节段植骨融合内固定术治疗先天性半椎体畸形的疗效。方法:抽取兰州军区兰州总医院骨科中心脊柱外科46例住院手术治疗先天性半椎体畸形的患者,随机化分为2组,每组23例,分别行一期后路半椎体切除短节段植骨融合内固定术和一期前路半椎体切除短节段植骨融合内固定术,观察比较两纽的手术时间、出血量、术后住院时间、术前和术后6个月侧凸cobb角、后凸cobb角及矫正率。结果:两组间的手术时间、出血量、术后住院时间、术后6个月后凸cobb角及后凸矫正率对比差异有统计学意义。结论:一期后路半椎体切除短节段植骨融合内固定术在后凸畸形矫正方面优于一期前路半椎体切除短节段植骨融合内固定术,且其手术创伤较小、术后恢复较快。  相似文献   

20.
Abstract

The current paper aims at assessing the sensitivity of muscle and intervertebral disc force computations against potential errors in modeling muscle attachment sites. We perturbed each attachment location in a complete and coherent musculoskeletal model of the human spine and quantified the changes in muscle and disc forces during standing upright, flexion, lateral bending, and axial rotation of the trunk. Although the majority of the muscles caused minor changes (less than 5%) in the disc forces, certain muscle groups, for example, quadratus lumborum, altered the shear and compressive forces as high as 353% and 17%, respectively. Furthermore, percent changes were higher in the shear forces than in the compressive forces. Our analyses identified certain muscles in the rib cage (intercostales interni and intercostales externi) and lumbar spine (quadratus lumborum and longissimus thoracis) as being more influential for computing muscle and disc forces. Furthermore, the disc forces at the L4/L5 joint were the most sensitive against muscle attachment sites, followed by T6/T7 and T12/L1 joints. Presented findings suggest that modeling muscle attachment sites based on solely anatomical illustrations might lead to erroneous evaluation of internal forces and promote using anatomical datasets where these locations were accurately measured. When developing a personalized model of the spine, certain care should also be paid especially for the muscles indicated in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号