首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NMR spin relaxation in the rotating frame (R) is a unique method for atomic-resolution characterization of conformational (chemical) exchange processes occurring on the microsecond time scale. Here, we use amide 1H off-resonance R relaxation experiments to determine exchange parameters for processes that are significantly faster than those that can be probed using 15N or 13C relaxation. The new pulse sequence is validated using the E140Q mutant of the C-terminal domain of calmodulin, which exhibits significant conformational exchange contributions to the transverse relaxation rates. The 1H off-resonance R data sample the entire relaxation dispersion profiles for the large majority of residues in this protein, which exchanges between conformations with a time constant of approximately 20 μs. This is in contrast to the case for 15N, where additional laboratory-frame relaxation data are required to determine the exchange parameters reliably. Experiments were performed on uniformly 15N-enriched samples that were either highly enriched in 2H or fully protonated. In the latter case, dipolar cross-relaxation with aliphatic protons were effectively decoupled to first order using a selective inversion pulse. Deuterated and protonated samples gave the same results, within experimental errors. The use of deuterated samples increases the sensitivity towards exchange contributions to the 1H transverse relaxation rates, since dipolar relaxation is greatly reduced. The exchange correlation times determined from the present 1H off-resonance R experiments are in excellent agreement with those determined previously using a combination of 15N laboratory-frame and off-resonance R relaxation data, with average values of and 21 ± 3 μs, respectively.  相似文献   

2.
The dynamic behavior of the polypeptide backbone of a recombinant anti-digoxin antibody VL domain has been characterized by measurements of 15N T1 and T2 relaxation times, 1H–15N NOE values, and 1H–2H exchange rates. These data were acquired with 2D inverse detected heteronuclear 1H–15N NMR methods. The relaxation data are interpreted in terms of model free spectral density functions and exchange contributions to transverse relaxation rates R2 (= 1/T2). All characterized residues display low-amplitude picosecond timescale librational motions. Fifteen residues undergo conformational changes on the nanosecond timescale, and 24 residues have significant R2 exchange contributions, which reflect motions on the microsecond to millisecond timescale. For several residues, microsecond to millisecond motions of nearby aromatic rings are postulated to account for some or all of their observed R2 exchange contributions. The measured 1H–2H exchange rates are correlated with hydrogen bonding patterns and distances from the solvent accessible surface. The degree of local flexibility indicated by the NMR measurements is compared to crystallographic B-factors derived from X-ray analyses of the native Fab and the Fab/digoxin complex. In general, both the NMR and X-ray data indicate enhanced flexibility in the turns, hypervariable loops, and portions of β-strands A, B, and G. However, on a residue-specific level, correlations among the various NMR data, and between the NMR and X-ray data, are often absent. This is attributed to the different dynamic processes and environments that influence the various observables. The combined data indicate that certain regions of the VL domain, including the three hypervariable loops, undergo dynamic changes upon VL:VH association and/ or complexation with digoxin. Overall, the 26–10 VL domain exhibits relatively low flexibility on the ps–ns timescale. The possible functional consequences of this result are considered. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Simple and convenient method of protein dynamics evaluation from the insufficient experimental 15N relaxation data is presented basing on the ratios, products, and differences of longitudinal and transverse 15N relaxation rates obtained at a single magnetic field. Firstly, the proposed approach allows evaluating overall tumbling correlation time (nanosecond time scale). Next, local parameters of the model-free approach characterizing local mobility of backbone amide N–H vectors on two different time scales, S2 and R ex , can be elucidated. The generalized order parameter, S2, describes motions on the time scale faster than the overall tumbling correlation time (pico- to nanoseconds), while the chemical exchange term, R ex , identifies processes slower than the overall tumbling correlation time (micro- to milliseconds). Advantages and disadvantages of different methods of data handling are thoroughly discussed.  相似文献   

4.
Activated dynamics plays a central role in protein function, where transitions between distinct conformations often underlie the switching between active and inactive states. The characteristic time scales of these transitions typically fall in the microsecond to millisecond range, which is amenable to investigations by NMR relaxation dispersion experiments. Processes at the faster end of this range are more challenging to study, because higher RF field strengths are required to achieve refocusing of the exchanging magnetization. Here we describe a rotating-frame relaxation dispersion experiment for 1H spins in methyl 13CHD2 groups, which improves the characterization of fast exchange processes. The influence of 1H–1H rotating-frame nuclear Overhauser effects (ROE) is shown to be negligible, based on a comparison of R 1ρ relaxation data acquired with tilt angles of 90° and 35°, in which the ROE is maximal and minimal, respectively, and on samples containing different 1H densities surrounding the monitored methyl groups. The method was applied to ubiquitin and the apo form of calmodulin. We find that ubiquitin does not exhibit any 1H relaxation dispersion of its methyl groups at 10 or 25 °C. By contrast, calmodulin shows significant conformational exchange of the methionine methyl groups in its C-terminal domain, as previously demonstrated by 1H and 13C CPMG experiments. The present R 1ρ experiment extends the relaxation dispersion profile towards higher refocusing frequencies, which improves the definition of the exchange correlation time, compared to previous results.  相似文献   

5.
Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, 1H–15N HSQC, is used to measure the 15N transverse relaxation rate (R2), the measured R2 rate is convoluted with the HX rate (kHX) and has higher apparent R2 values. Since the 15N R2 measurement is important for analyzing protein backbone dynamics, the HX effect on the R2 measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing 15N R 2 CPMG experiments on α-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R 2 CPMG can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D2O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R 2 CPMG values be obtained by methods described herein.  相似文献   

6.
The proton nuclear magnetic resonance (NMR) spin-lattice relaxation of all six amides of deferriferrichrome and of various alumichromes dissolved in hexadeutero-dimethylsulfoxide have been investigated at 100, 220, and 360 MHz. We find that, depending on the type of residue (glycyl or ornithyl), the amide proton relaxation rates are rather uniform in the metal-free cyclohexapeptide. In contrast, the 1H spinlattice relaxation times (T1's) are distinct in the Al3+-coordination derivative. Similar patterns are observed in a number of isomorphic alumichrome homologues that differ in single-site residue substitutions, indicating that the spin-lattice relaxation rate is mainly determined by dipole-dipole interactions within a rigid molecular framework rather than by the specific primary structures. Analysis of the data in terms of 1H—1H distances (r) calculated from X-ray coordinates yields a satisfactory linear fit between T1-1 and Σr-6 at the three magnetic fields. Considering the very sensitive r-dependence of T1, the agreement gives confidence, at a quantitative level, both on the fitness of the crystallographic model to represent the alumichromes' solution conformation and on the validity of assuming isotropic rotational motion for the globular metallopeptides. An extra contribution to the amide proton T1-1 is proposed to mainly originate from the 1H-14N dipolar interaction: this was supported by comparison with measurements on an 15N-enriched peptide. The nitrogen dipolar contribution to the peptide proton relaxation is discussed in the context of {1H}—1H nuclear Overhauser enhancement (NOE) studies because, especially at high fields, it can be dominant in determining the amide proton relaxation rates and hence result in a decreased effectiveness for the 1H—1H dipolar mechanism to cause NOE's. From the slope and intersect values of T1-1 vs. Σr-6 linear plots, a number of independent estimates of τr, the rotational correlation time, were derived. These and the field-dependence of the T1's yield a best estimate <τr> ≈ 0.37 ns, in good agreement with 0.38 ns [unk] <τr> [unk] 0.41 ns, previously determined from 13C and 15N spin-lattice relaxation data.  相似文献   

7.
15N R2 relaxation measurements are key for the elucidation of the dynamics of both folded and intrinsically disordered proteins (IDPs). Here we show, on the example of the intrinsically disordered protein α-synuclein and the folded domain PDZ2, that at physiological pH and near physiological temperatures amide—water exchange can severely skew Hahn-echo based 15N R2 relaxation measurements as well as low frequency data points in CPMG relaxation dispersion experiments. The nature thereof is the solvent exchange with deuterium in the sample buffer, which modulates the 15N chemical shift tensor via the deuterium isotope effect, adding to the apparent relaxation decay which leads to systematic errors in the relaxation data. This results in an artificial increase of the measured apparent 15N R2 rate constants—which should not be mistaken with protein inherent chemical exchange contributions, Rex, to 15N R2. For measurements of 15N R2 rate constants of IDPs and folded proteins at physiological temperatures and pH, we recommend therefore the use of a very low D2O molar fraction in the sample buffer, as low as 1%, or the use of an external D2O reference along with a modified 15N R2 Hahn-echo based experiment. This combination allows for the measurement of Rex contributions to 15N R2 originating from conformational exchange in a time window from µs to ms.  相似文献   

8.
We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15N–T 1 timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s−1. Backbone amide 15N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41ε. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D2O is employed as a solvent for sample preparation. Due to the intrinsically long 15N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.  相似文献   

9.
It is becoming increasingly apparent that proteins are not static entities and that their function often critically depends on accurate sampling of multiple conformational states in aqueous solution. Accordingly, the development of methods to study conformational states in proteins beyond their ground-state structure (“excited states”) has crucial biophysical importance. Here we investigate experimental schemes for optimally probing chemical exchange processes in proteins on the micro- to millisecond timescale by 15N R relaxation dispersion. The schemes use selective Hartmann–Hahn cross-polarization (CP) transfer for excitation, and derive peak integrals from 1D NMR spectra (Korzhnev et al. in J Am Chem Soc 127:713–721, 2005; Hansen et al. in J Am Chem Soc 131:3818–3819, 2009). Simulation and experiment collectively show that in such CP-based schemes care has to be taken to achieve accurate suppression of undesired off-resonance coherences, when using weak spin-lock fields. This then (i) ensures that relaxation dispersion profiles in the absence of chemical exchange are flat, and (ii) facilitates extraction of relaxation dispersion profiles in crowded regions of the spectrum. Further improvement in the quality of the experimental data is achieved by recording the free-induction decays in an interleaved manner and including a heating-compensation element. The reported considerations will particularly benefit the use of CP-based R relaxation dispersion to analyze conformational exchange processes in larger proteins, where resonance line overlap becomes the main limiting factor.  相似文献   

10.
Chemical exchange saturation transfer (CEST) experiments are becoming increasingly popular for investigating biomolecular exchange dynamics with rates on the order of approximately 50–500 s?1 and a rich toolkit of different methods has emerged over the past few years. Typically, experiments are based on the evolution of longitudinal magnetization, or in some cases two-spin order, during a fixed CEST relaxation delay, with the same class of magnetization prepared at the start and selected at end of the CEST period. Here we present a pair of TROSY-based pulse schemes for recording amide and methyl 1H CEST profiles where longitudinal magnetization at the start evolves to produce two-spin order that is then selected at the completion of the CEST element. This selection process subtracts out contributions from 1H–1H cross-relaxation on the fly that would otherwise complicate analysis of the data. It also obviates the need to record spin-state selective CEST profiles as an alternative to eliminating NOE effects, leading to significant improvements in sensitivity. The utility of the approach is demonstrated on a sample of a cavity mutant of T4 lysozyme that undergoes chemical exchange between conformations where the cavity is free and occupied.  相似文献   

11.
The dormant cysts of Artemia undergo cycles of hydration-dehydration without losing viability. Therefore, Artemia cysts serve as an excellent intact cellular system for studying the dynamics of water-protein interactions as a function of hydration. Deuterium spin-lattice (T1) and spin-spin (T2) relaxation times of water in cysts hydrated with D2O have been measured for hydrations between 1.5 and 0.1 g of D2O per gram of dry solids. When the relaxation rates (I/T1, I/T2) of 2H and 17O are plotted as a function of the reciprocal of hydration (1/H), an abrupt change in slope is observed near 0.6 g of D2O (or H2 17O)/gram of dry solids, the hydration at which conventional metabolism is activated in this system. The results have been discussed in terms of the two-site and multisite exchange models for the water-protein interaction as well as protein dynamics models. The 2H and 17O relaxation rates as a function of hydration show striking similarities to those observed for anisotropic motion of water molecules in protein crystals.

It is suggested here that although the simple two-site exchange model or n-site exchange model could be used to explain our data at high hydration levels, such models are not adequate at low hydration levels (<0.6 g H2O/g) where several complex interactions between water and proteins play a predominant role in the relaxation of water nuclei. We further suggest that the abrupt change in the slope of I/T1 as a function of hydration in the vicinity of 0.6 g H2O/g is due to a change in water-protein interactions resulting from a variation in the dynamics of protein motion.

  相似文献   

12.
Because the overall tumbling provides a major contribution to protein spectral densities measured in solution, the choice of a proper model for this motion is critical for accurate analysis of protein dynamics. Here we study the overall and backbone dynamics of the B3 domain of protein G using 15N relaxation measurements and show that the picture of local motions is markedly dependent on the model of overall tumbling. The main difference is in the interpretation of the elevated R 2 values in the -helix: the isotropic model results in conformational exchange throughout the entire helix, whereas no exchange is predicted by anisotropic models that place the longitudinal axis of diffusion tensor almost parallel to the helix axis. Due to small size (fast tumbling) of the protein, the T 1 values have low sensitivity to NH bond orientation. The diffusion tensor derived from orientation dependence of R 2/R 1 is anisotropic (D par/D perp=1.4), with a small rhombic component. In order to distinguish the correct picture of motion, we apply model-independent methods that are sensitive to conformational exchange and do not require knowledge of protein structure or assumptions about its dynamics. A comparison of the CSA/dipolar cross-correlation rate constants with 15N relaxation rates and the estimation of R ex terms from relaxation data at 9.4 and 14.1 T indicate no conformational exchange in the helix, in support of the anisotropic models. The experimentally derived diffusion tensor is in excellent agreement with theoretical predictions from hydrodynamic calculations; a detailed comparison with various hydrodynamic models revealed optimal parameters for hydrodynamic calculations.  相似文献   

13.
The origin of the unoccupied nuclear oestrogen receptor (Rn) was studied. Three working hypotheses were investigated. (a) Rn is a dissociation product of the oestrogen occupied nuclear receptor (ERn). (b) ERn is only partially occupied, so that additional binding may occur at 0°C (the temperature at which oestradiol saturates unoccupied sites). (c) Rn is derived from the penetration of unoccupied cytoplasmic receptor (Rc) into the nucleus. The MCF-7 cell line was used as a model in the present investigation. The amount of unoccupied receptors was measured by saturation with 7.5nm-[3H]oestradiol at 0°C, whereas the occupied receptors were measured by exchange at 30°C. The cells at preconfluency were exposed to a medium fortified with 10nm-[3H]oestradiol for 1h, washed and cultured up to 5 days in fresh growth medium. The distribution of oestradiol receptors was determined before exposure and during the following 5 days. After 1h exposure only ERn was found in the nuclear fraction. Thereafter ERn declined continuously so that on day 5 it approached 15% of its value measured 1h after exposure. Although after 3 days about 80% of ERn disappeared no Rn appeared, which contradicts hypotheses (a) and (b). On day 4 Rn and Rc appeared simultaneously. The appearance of Rn and Rc was not prevented by culturing the cells in an oestrogen-free medium, supporting hypothesis (c). Exposure of cells to increasing concentration of [3H]oestradiol (0.1–10nm) for 1h resulted in a parallel increase in ERn without increasing the amount of unoccupied binding sites, which contradicts hypothesis (b). The present study supports the hypothesis (c), i.e., Rc may also penetrate the nucleus without binding to oestradiol.  相似文献   

14.
Relaxation parameters such as longitudinal relaxation are susceptible to artifacts such as spin diffusion, and can be affected by paramagnetic impurities as e.g. oxygen, which make a quantitative interpretation difficult. We present here the site-specific measurement of [1H]13C and [1H]15N heteronuclear rates in an immobilized protein. For methyls, a strong effect is expected due to the three-fold rotation of the methyl group. Quantification of the [1H]13C heteronuclear NOE in combination with 13C-R 1 can yield a more accurate analysis of side chain motional parameters. The observation of significant [1H]15N heteronuclear NOEs for certain backbone amides, as well as for specific asparagine/glutamine sidechain amides is consistent with MD simulations. The measurement of site-specific heteronuclear NOEs is enabled by the use of highly deuterated microcrystalline protein samples in which spin diffusion is reduced in comparison to protonated samples.  相似文献   

15.
Modification of cytosine plays an important role in epigenetic regulation of gene expression and genome stability. Cytosine is converted to 5-methylcytosine (5mC) by DNA methyltransferase; in turn, 5mC may be oxidized to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation enzyme. The structural flexibility of DNA is known to affect the binding of proteins to methylated DNA. Here, we have carried out a semi-quantitative analysis of the dynamics of double-stranded DNA (dsDNA) containing various epigenetic modifications by combining data from imino 1H exchange and imino 1H R relaxation dispersion NMR experiments in a complementary way. Using this approach, we characterized the base-opening (kopen) and base-closing (kclose) rates, facilitating a comparison of the base-opening and -closing process of dsDNA containing cytosine in different states of epigenetic modification. A particularly striking result is the increase in the kopen rate of hemi-methylated dsDNA 5mC/C relative to unmodified or fully methylated dsDNA, indicating that the Watson–Crick base pairs undergo selective destabilization in 5mC/C. Collectively, our findings imply that the epigenetic modulation of cytosine dynamics in dsDNA mediates destabilization of the GC Watson–Crick base pair to allow base-flipping in living cells.  相似文献   

16.
Off-resonance effects can introduce significant systematic errors in R2 measurements in constant-time Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation dispersion experiments. For an off-resonance chemical shift of 500 Hz, 15N relaxation dispersion profiles obtained from experiment and computer simulation indicated a systematic error of ca. 3%. This error is three- to five-fold larger than the random error in R2 caused by noise. Good estimates of total R2 uncertainty are critical in order to obtain accurate estimates in optimized chemical exchange parameters and their uncertainties derived from χ2 minimization of a target function. Here, we present a simple empirical approach that provides a good estimate of the total error (systematic + random) in 15N R2 values measured for the HIV protease. The advantage of this empirical error estimate is that it is applicable even when some of the factors that contribute to the off-resonance error are not known. These errors are incorporated into a χ2 minimization protocol, in which the Carver–Richards equation is used fit the observed R2 dispersion profiles, that yields optimized chemical exchange parameters and their confidence limits. Optimized parameters are also derived, using the same protein sample and data-fitting protocol, from 1H R2 measurements in which systematic errors are negligible. Although 1H and 15N relaxation profiles of individual residues were well fit, the optimized exchange parameters had large uncertainties (confidence limits). In contrast, when a single pair of exchange parameters (the exchange lifetime, τex, and the fractional population, pa), were constrained to globally fit all R2 profiles for residues in the dimer interface of the protein, confidence limits were less than 8% for all optimized exchange parameters. In addition, F-tests showed that quality of the fits obtained using τex, pa as global parameters were not improved when these parameters were free to fit the R2 profiles of individual residues. Finally, nearly the same optimized global τex, pa values were obtained, when the 1H and 15N data sets for residues in the dimer interface, were fit independently; the difference in optimized global parameters, ca. 10%, was of marginal significance according to the F-test.  相似文献   

17.
Summary 2D 15N-1H correlation spectra are ideal for measuring backbone amide populations to determine amide exchange protection factors in studies of protein folding or other structural features. Most protein NMR spectroscopists use HSQC, which has been shown to be generally superior to HMQC in both resolution and sensitivity. The refocused HSQC experiment is intrinsically less sensitive than the regular HSQC, due to T2 relaxation during the refocusing delays. However, we show here that, when high 15N resolution is needed, an optimized refocused HSQC sequence that utilizes a semi-constant time evolution period and pulsed field gradients has better signal-to-noise ratio and resolution, and integrates more accurately, than a similar HSQC. The differences are demonstrated on a 20 kDa protein. The technique can also be applied to 3D NOESY experiments to eliminate strong NH2 geminal peaks and their truncation artefacts at a modest cost in sensitivity.  相似文献   

18.
Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the “active” orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s−1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s−1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17–23 s−1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a “dormant” orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations.  相似文献   

19.
15N spin relaxation data is widely used to extract detailed dynamic information regarding bond vectors such as the amide N–H bond of the protein backbone. Analysis is typically carried using the Lipari–Szabo model-free approach. Even though the original model-free equation can be determined from single field R 1, R 2 and NOE, over-determination of more complex motional models is dependent on the recording of multiple field datasets. This is especially important for the characterization of conformational exchange which affects R 2 in a field dependent manner. However, severe artifacts can be introduced if inconsistencies arise between experimental setups with different magnets (or samples). Here, we propose the use of simple tests as validation tools for the assessment of consistency between different datasets recorded at multiple magnetic fields. Synthetic data are used to show the effects of inconsistencies on the proposed tests. Moreover, an analysis of data currently deposited in the BMRB is performed. Finally, two cases from our laboratory are presented. These tests are implemented in the open-source program relax, and we propose their use as a routine check-up for assessment of multiple field dataset consistency prior to any analysis such as model-free calculations. We believe this will aid in the extraction of higher quality dynamics information from 15N spin relaxation data.  相似文献   

20.
Understanding protein stabilization by small organic compounds is a topic of great practical importance. The effect of mannosylglycerate, a charged compatible solute typical of thermophilic microorganisms, on a variant of staphylococcal nuclease was investigated using several NMR spectroscopy methods. No structural changes were apparent from the chemical shifts of amide protons. Measurements of 15N relaxation and model-free analysis, water-amide saturation transfer (phase-modulated CLEAN chemical exchange), and hydrogen/deuterium exchange rates provided a detailed picture of the effects of mannosylglycerate on the backbone dynamics and time-averaged structure of this protein. The widest movements of the protein backbone were significantly constrained in the presence of mannosylglycerate, as indicated by the average 5-fold decrease of the hydrogen/deuterium exchange rates, but the effect on the millisecond timescale was small. At high frequencies, internal motions of staphylococcal nuclease were progressively restricted with increasing concentrations of mannosylglycerate or reduced temperature, while the opposite effect was observed with urea (a destabilizing solute). The order parameters showed a strong correlation with the changes in the Tm values induced by different solutes, determined by differential scanning calorimetry. These data show that mannosylglycerate caused a generalised reduction of backbone motions and demonstrate a correlation between protein stabilization and protein rigidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号