首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic graft-versus-host disease (cGVHD) is considered an autoimmune-like disease mediated by donor CD4(+) T cells, but the origin of the autoreactive T cells is still controversial. In this article, we report that the transplantation of DBA/2 donor spleen cells into thymectomized MHC-matched allogeneic BALB/c recipients induced autoimmune-like cGVHD, although not in control syngeneic DBA/2 recipients. The donor-type CD4(+) T cells from the former but not the latter recipients induced autoimmune-like manifestations in secondary allogeneic BALB/c as well as syngeneic DBA/2 recipients. Transfer of donor-type CD4(+) T cells from secondary DBA/2 recipients with disease into syngeneic donor-type or allogeneic host-type tertiary recipients propagated autoimmune-like manifestations in both. Furthermore, TCR spectratyping revealed that the clonal expansion of the autoreactive CD4(+) T cells in cGVHD recipients was initiated by an alloimmune response. Finally, hybridoma CD4(+) T clones derived from DBA/2 recipients with disease proliferated similarly in response to stimulation by syngeneic donor-type or allogeneic host-type dendritic cells. These results demonstrate that the autoimmune-like manifestations in cGVHD can be mediated by a population of donor CD4(+) T cells in transplants that simultaneously recognize Ags presented by both donor and host APCs.  相似文献   

2.
A strong female predominance is a well-recognized feature of human lupus. The mechanism by which sex influences disease expression and severity is not fully understood. To address this question, we used the parent-into-F(1) (p-->F(1)) model of chronic graft-vs-host disease (cGVHD) in which lupus-like humoral autoimmunity and renal disease are induced in normal F(1) mice. An advantage of this model is that the pathogenic T cells driving disease (donor strain) can be studied separately from nonspecifically activated T cells (host strain). We observed that lupus-like disease using female donor and host mice (f-->F cGVHD) is characterized by more severe long-term disease (glomerulonephritis) than with male donor and host (m-->M cGVHD). Interestingly, differences in disease parameters could be seen at 2 wk after parental cell transfer, as evidenced by a 2- to 3-fold greater engraftment of donor CD4(+) T cells in f-->F cGVHD mice, which persisted throughout disease course. Enhanced engraftment of donor CD4(+) T cells in f-->F cGVHD mice was not due to differences in splenic homing, alloreactive precursor frequency, initial proliferation rates, or apoptotic rates, but rather to sustained high proliferation rates during wk 2 of disease compared with m-->M cGVHD mice. Crossover studies (m-->F, f-->M) demonstrated that enhanced donor CD4(+) T cell proliferation and engraftment segregate with the sex of the host. These results demonstrate that the sex of the recipient can influence the expansion of pathogenic T cells, thus increasing long-term the burden of autoreactive T cells and resulting in greater disease severity.  相似文献   

3.
In the DBA/2 --> unirradiated (C57BL/6 x DBA/2)F(1) model of chronic graft-vs-host disease (cGVHD), donor CD4(+) T cells play a critical role in breaking host B cell tolerance, while donor CD8(+) T cells are rapidly removed and the remaining cells fall into anergy. Previously we have demonstrated that in vivo ligation of GITR (glucocorticoid-induced TNF receptor-related gene) can activate donor CD8(+) T cells, subsequently converting the disease pattern from cGVHD to an acute form. In this study, we investigated the effect of an agonistic mAb against CD40 on cGVHD. Treatment of anti-CD40 mAb inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis. The inhibition of cGVHD occurred because anti-CD40 mAb prevented donor CD8(+) T cell anergy such that subsequently activated donor CD8(+) T cells deleted host CD4(+) T cells and host B cells involved in autoantibody production. Additionally, functionally activated donor CD8(+) T cells induced full engraftment of donor hematopoietic cells and exhibited an increased graft-vs-leukemia effect. However, induction of acute GVHD by donor CD8(+) T cells seemed to be not so apparent. Further CTL analysis indicated that there were lower levels of donor CTL activity against host cells in mice that received anti-CD40 mAb, compared with mice that received anti-GITR mAb. Taken together, our results suggest that a different intensity of donor CTL activity is required for removal of host hematopoietic cells, including leukemia vs induction of acute GVHD.  相似文献   

4.
In this study, we investigated the effect of an agonistic mAb (DTA-1) against glucocorticoid-induced TNF receptor (GITR) in a murine model of systemic lupus erythematosus-like chronic graft-vs-host disease (cGVHD). A single dose of DTA-1 inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis, typical symptoms of cGVHD. DTA-1-treated mice showed clinical and pathological signs of acute GVHD (aGVHD), such as lymphopenia, loss of body weight, increase of donor cell engraftment, and intestinal damage, indicating that DTA-1 shifted cGVHD toward aGVHD. The conversion of cGVHD to aGVHD occurred because DTA-1 prevented donor CD8+ T cell anergy. Functionally active donor CD8+ T cells produced high levels of IFN-gamma and had an elevated CTL activity against host Ags. In in vitro MLR, anergic responder CD8+ T cells were generated, and DTA-1 stimulated the activation of these anergic CD8+ T cells. We further confirmed in vivo that donor CD8+ T cells, but not donor CD4+ T cells, were responsible for the DTA-1-mediated conversion of cGVHD to aGVHD. These results indicate that donor CD8+ T cell anergy is a restriction factor in the development of aGVHD and that in vivo ligation of GITR prevents CD8+ T cell anergy by activating donor CD8+ T cells that otherwise become anergic. In sum, our data suggest GITR as an important costimulatory molecule regulating cGVHD vs aGVHD and as a target for therapeutic intervention in a variety of related diseases.  相似文献   

5.
We reported that both donor CD4(+) T and B cells in transplants were required for induction of an autoimmune-like chronic graft-versus-host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. In this study, we report that, although donor B cells have little impact on acute GVHD severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e., skin and lung); they also markedly augment damage in a prototypical cGVHD target organ, the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4(+) T cells to upregulate MHC II and costimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4(+) T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4(+) T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation, and survival of pathogenic CD4(+) T cells.  相似文献   

6.
When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.  相似文献   

7.
Despite negative selection in the thymus, significant numbers of autoreactive T cells still escape to the periphery and cause autoimmune diseases when immune regulation goes awry. It is largely unknown how these T cells escape clonal deletion. In this study, we report that CD24 deficiency caused deletion of autoreactive T cells that normally escape negative selection. Restoration of CD24 expression on T cells alone did not prevent autoreactive T cells from deletion; bone marrow chimera experiments suggest that CD24 on radio-resistant stromal cells is necessary for preventing deletion of autoreactive T cells. CD24 deficiency abrogated the development of experimental autoimmune encephalomyelitis in transgenic mice with a TCR specific for a pathogenic autoantigen. The role of CD24 in negative selection provides a novel explanation for its control of genetic susceptibility to autoimmune diseases in mice and humans.  相似文献   

8.
9.
Autoreactive T cells have been defined by their capacity to respond to self-Ia antigens expressed on non-T cells. Several recent studies have suggested that these cells may play important immunoregulatory functions. However, it is not clear what regulates the responsiveness of autoreactive T cells and why such cells are not demonstrably stimulated in vivo, where they are in the constant presence of self-Ia antigens. In the present study we examined the role of T suppressor (Ts) cells in regulating autoreactive T cells. We observed that enhanced autoreactivity occurred in vitro when Lyt2+ T cells were depleted from the responding and/or stimulating spleen cells in a syngeneic mixed-lymphocyte reaction. Similarly, addition of irradiated Lyt2+ T cells but not L3T4+ T cells inhibited the response of L3T4+ T cells to self-Ia antigens. The activity of the suppressor cells was specific to the autoreactive T cells since antigen-specific and alloreactive T-cell proliferation were not inhibited. Furthermore, depletion of Lyt2+ T cells by in vivo treatment of mice with anti-Lyt2 monoclonal antibodies caused enhanced endogenous proliferation of lymph node and splenic T cells and increased the T-cell response to self-Ia antigens in vitro. These studies, therefore, suggest that T-cell tolerance to self-Ia antigens in vivo may be maintained by naturally occurring Lyt2+ Ts. Mice having enhanced autoreactivity may provide a useful tool to address the role of autoreactive T cells in the immune response to foreign antigens and in the pathogenesis of autoimmune diseases.  相似文献   

10.
Antigen administration can ameliorate autoimmune disease via various mechanisms, including deletion of autoreactive cells, induction of regulatory T cells, and deviation to non-pathogenic or protective responses. All these mechanisms of immunointervention have been successfully used to prevent and sometimes treat experimental models of autoimmune diseases. Based on these results, expectations have been raised for exploiting similar strategies to inhibit pathogenic autoreactive T cells in human autoimmune diseases. Among them, mucosal administration of autoantigen is an attractive mode of immunointervention still awaiting demonstration of clinical efficacy in human autoimmune diseases. A further step in this direction is now provided by the clear-cut immune deviation observed following oral administration of a disease-related peptide to rheumatoid arthritis patients, leading to inhibition of Th1 while enhancing Th2 and possibly Foxp3-positive regulatory T cells.  相似文献   

11.
Regulation of the immune response to self-antigens is a complex process that involves maintaining self-tolerance while preserving the capacity to exert an effective immune response. The primary mechanism that leads to self-tolerance is central tolerance. However, potential pathogenic autoreactive lymphocytes are normally present in the periphery of all individuals. This suggests the existence of mechanisms of peripheral tolerance that prevent the initiation of autoimmune diseases by limiting the activation of autoreactive lymphocytes. If these mechanisms of peripheral tolerance are impaired, the autoreactive lymphocytes may be activated and autoimmune diseases can develop. Several processes are involved in the maintenance of peripheral tolerance: the active suppression mediated by regulatory T cell populations, the different maturation state of antigen-presenting cells presenting the autoantigen to autoreactive lymphocytes, inducing tolerance instead of cell activation, the characteristics of B cell populations. A deeper comprehension of these mechanisms may lead to important therapeutic applications, such as the development of cellular vaccines for organ-specific autoimmune diseases. In addition, autoimmunity does not always have pathological consequences, but may exert a protective function, as suggested by several observations on the beneficial role of autoreactive T cells in central nervous system injury.  相似文献   

12.
An overview of regulatory T cells   总被引:3,自引:0,他引:3  
The induction of tolerance is essential for the maintenance of immune homeostasis and for the prevention of autoimmune diseases. To induce tolerance the immune system uses several mechanisms, including the deletion of autoreactive T cells, the induction of anergy and active suppression of autoimmune responses. The mechanisms of thymic deletion and anergy of autoreactive T cells are well characterized, whereas active suppression by T regulatory cells, which has recently emerged as an essential component of the immune response to induce peripheral tolerance, is less well understood. Results from seminal studies by a number of laboratories have renewed interest in (CD4(+)) T cells with regulatory properties and some of the researchers who have been involved in this effort have contributed to this Forum on regulatory T cells. This general overview on regulatory T cells comments on recent results in the field of regulatory T cells and presents our current knowledge on Tr1 T cells.  相似文献   

13.
Costimulation-deficient dendritic cells (DCs) prevent autoimmune disease in mouse models. However, autoimmune-prone mice and humans fail to control expansion of peripheral autoreactive effector memory T cells (T(EMs)), which resist immunoregulation by costimulation-deficient DCs. In contrast, activation of DC costimulation may be coupled with regulatory capacity. To test whether costimulatory DCs control T(EMs) and attenuate established autoimmune disease, we used RelB-deficient mice, which have multiorgan inflammation, expanded peripheral autoreactive T(EMs), and dysfunctional Foxp3(+) regulatory T cells (Tregs) cells and conventional DCs. T(EMs) were regulated by Foxp3(+) Tregs when costimulated by CD3/CD28-coated beads or wild-type DCs but not DCs deficient in RelB or CD80/CD86. After transfer, RelB and CD80/CD86-sufficient DCs restored tolerance and achieved a long-term cure of autoimmune disease through costimulation of T(EM) and Foxp3(+) Treg IFN-γ production, as well as induction of IDO by host APCs. IDO was required for regulation of T(EMs) and suppression of organ inflammation. Our data challenge the paradigm that costimulation-deficient DCs are required to regulate established autoimmune disease to avoid T(EM) activation and demonstrate cooperative cross-talk between costimulatory DCs, IFN-γ, and IDO-dependent immune regulation. IFN-γ and IDO activity may be good surrogate biomarkers measured against clinical efficacy in trials of autoimmune disease immunoregulation.  相似文献   

14.
Autoreactive CD8(+) T lymphocytes play a key role in the pathogenesis of several autoimmune diseases. It is not yet well understood how autoreactive CD8(+) T cells, which express TCRs with low reactivity toward self-Ags, gain the ability to respond to autoantigens to cause disease. Previously, we have shown that prior stimulation of CD8(+) T cells with synergistic combinations of cytokines produced by the innate immune response, such as IL-21 and IL-15, induces Ag-independent proliferation. Such "cytokine-primed" CD8 T cells displayed increased responsiveness to limiting quantities of the cognate Ag. In this paper, we report that prior stimulation with IL-15 and IL-21 also enables CD8(+) T cells to respond to weakly agonistic TCR ligands, resulting in proliferation, cytokine secretion, and cytolytic activity. Using a transgenic mouse model of autoimmune diabetes, we show that cytokine-primed autoreactive CD8(+) T cells induce disease following stimulation by weak TCR ligands, but their diabetogenic potential is dependent on continuous availability of IL-15 in vivo. These findings suggest that inflammatory cytokines could facilitate the triggering of autoreactive CD8(+) T cells by weak autoantigens, and this mechanism may have important implications for autoimmune diseases associated with microbial infections and chronic inflammation.  相似文献   

15.
Recently, accumulating evidence has suggested that B cell depletion therapy with rituximab is effective not only in autoantibody‐associated, but also in T cell‐mediated, autoimmune diseases. It is likely that B cells play an important role in regulating the extent of immune response in both physiological and pathological conditions. When a severe infection occurs, pathogens spread throughout the bloodstream. B cells in the blood capture the pathogens, via their specific antigen receptors (surface immunoglobulins), then present the specific antigen to T cells in the spleen, thus increasing the degree of T‐cell immune responses to systemic infection. Similarly, in the exacerbation stage of autoimmunity, a large amount of autoantigens may be released into the blood and be captured by autoantigen specific B cells, and this may be followed by presentation of the antigen to CD4 positive autoreactive T cells resulting in extensive activation and proliferation of autoreactive T cells. Thus, it has been suggested that B‐cell depletion therapy for autoimmune diseases is most useful for the “vicious cycle” phase of autoreactive immune response. The recognition of this paradigm for the role of B cells in regulating the magnitude of immune response will help to facilitate both basic and clinical research on the regulation of immune responses.  相似文献   

16.
In multiple sclerosis (MS) and other autoimmune diseases, the autoreactive T cells overcome the resistance provided by the regulatory T cells (Tregs) due to a decrease in the number of Foxp3-expressing Tregs. Therefore, upregulation and/or maintenance of Tregs during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Here we have undertaken an innovative approach to upregulate Tregs and achieve immunomodulation. RNS60 is a 0.9% saline solution generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) and PNS60 (saline containing excess oxygen without TCP modification), was found to upregulate Foxp3 and enrich Tregs in MBP-primed T cells. Moreover, RNS60, but not NS, RNS10.3 and PNS60, inhibited the production of nitric oxide (NO) and the expression of iNOS in MBP-primed splenocytes. Incubation of the cells with an NO donor abrogated the RNS60-mediated upregulation of Foxp3. These results suggest that RNS60 boosts Tregs via suppression of NO production. Consistent to the suppressive activity of Tregs towards autoreactive T cells, RNS60, but not NS, RNS10.3, or PNS60, suppressed the differentiation of Th17 and Th1 cells and shifted the balance towards a Th2 response. Finally, RNS60 treatment exhibited immunomodulation and ameliorated adoptive transfer of experimental allergic encephalomyelitis, an animal model of MS, via Tregs. These results describe a novel immunomodulatory property of RNS60 and suggest its exploration for therapeutic intervention in MS and other autoimmune disorders.  相似文献   

17.
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T‐cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti‐inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti‐inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti‐inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro‐inflammatory Th1 and Th17 cells, and indirectly decrease Th cell‐mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.  相似文献   

18.
Autoimmune disorders play an increasing role in public health, especially in light of the fact of the growing aged population, which primarily develop such diseases. A clear understanding of the mechanisms leading to the development of autoimmune responses and finally to autoimmune disease does not exist. Autoimmunity is characterized by the presence of autoantibodies and/or autoreactive T cells and the corresponding organ manifestation. Following the discovery of autoreactive T cells found in the periphery of mice and humans, the old immunological concept that autoreactive T cells are completely deleted in the thymus during evolution has been revised in recent years. Although antigen-presenting cells and particularly dendritic cells are known to play an important role in the regulation of immune responses and the activation of T cells, recent evidence suggests that the role of dendritic cells in the development of autoimmunity has been underestimated previously. This article aims to give a general overview on the basic immunological principles involved and gives a short review of the current literature on the functional relevance of dendritic cells in various human and murine autoimmune disorders.  相似文献   

19.
Autoreactive T cells mediate NK cell degeneration in autoimmune disease   总被引:3,自引:0,他引:3  
Emerging evidence indicates that NK cells play an important and complex role in autoimmune disease. Humans with autoimmune diseases often have reduced NK cell numbers and compromised NK cell functions. Mechanisms underlying this NK cell degeneration and its biological significance are not known. In this study we show that, in an experimental model of human autoimmune myasthenia gravis induced by a self-Ag, the acetylcholine receptor, NK cells undergo proliferation during the initiation of autoimmunity, followed by significant degeneration associated with the establishment of the autoreactive T cell response. We show that NK cell degeneration was mediated by IL-21 derived from autoreactive CD4(+) T cells, and that acetylcholine receptor-immunized IL-21R-deficient mice, with competent NK cells, developed exacerbated autoimmunity. Thus, NK cell degeneration may serve as a means evolved by the immune system to control excessive autoimmunity.  相似文献   

20.
BALB/c (H-2d) mice rendered tolerant to h-2b alloantigens by neonatal injection of semiallogeneic (C57BL/6 X BALB/c)F1 spleen cells develop autoimmune features due to an abnormal activation of persisting F1 donor B cells. The role of T cells in this autoimmune syndrome was studied by in vivo treatment of tolerant mice with anti-L3T4(GK-1.5) or anti-Ly-2 (H-35-17.2) monoclonal antibodies. The treatment of tolerant mice from day 2 to day 21 of life with anti-L3T4 MAb completely prevented the occurrence of circulating immune complexes of anti-ssDNA anti-Sm and anti-hapten (FITC) IgG antibodies as well as the glomerular deposition of Ig that were usually seen in untreated tolerant mice. This effect persisted for at least 6 wk after stopping this treatment. When the injections of anti-L3T4 MAb were delayed until day 15 of life, a very significant decrease of the autoimmune manifestations was still observed. Treatment of tolerant mice with anti-Ly-2 MAb during the same period had no effects on the autoimmune disease as compared with untreated tolerant mice. No effects on the maintenance of tolerance vs H-2b alloantigens were observed after treatment with anti-L3T4 MAb, as followed by the decrease of CTL and CTL-p alloreactivity and by the persistence of F1 donor B cells, indicated by the presence of Ig bearing the Ighb donor allotype. These results suggest the existence of interactions between L3T4+ T cells and persisting autoreactive B cells from F1 donor origin in the development of the autoimmune syndrome after neonatal induction of transplantation tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号