首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of cobalt on lipid peroxidation in biological membranes, phospholipid liposomes and fatty acid micelles was investigated. Cobaltous ion, at micromolar concentrations, inhibited iron-ascorbate induced lipid peroxidation in erythrocyte ghosts, microsomes and phosphatidylserine liposomes at pH 7.4. The pH seemed to be important for the anti-peroxidative effect of cobalt, because under slightly acidic conditions cobalt did not inhibit peroxidation. Cobalt was less effective in inhibiting peroxidation stimulated by organic hydroperoxides. Iron-ascorbate induced lipid peroxidation was also inhibited by EDTA. However, certain ratios of EDTA: cobalt in the reaction mixture stimulated peroxidation. Cobalt did not inhibit lipid peroxidation in linoleic acid micelles and phosphatidylethanolamine liposomes. The presence of phosphatidylserine, however, rendered these micelles and liposomes to cobalt inhibition. We conclude that the cobaltous ion is a potent inhibitor of lipid peroxidation in biological membranes and that the binding of cobalt to phosphatidylserine is necessary for the inhibitory effect of this metal ion.  相似文献   

2.
A model lipid peroxidation system dependent upon the hydroxyl radical, generated by Fenton's reagent, was compared to another model system dependent upon the enzymatic generation of superoxide by xanthine oxidase. Peroxidation was studied in detergent-dispersed linoleic acid and in phospholipid liposomes. Hydroxyl radical generation by Fenton's reagent (FeCl2 + H2O2) in the presence of phospholipid liposomes resulted in lipid peroxidation as evidenced by malondialdehyde and lipid hydroperoxide formation. Catalase, mannitol, and Tris-Cl were capable of inhibiting activity. The addition of EDTA resulted in complete inhibition of activity when the concentration of EDTA exceeded the concentration of Fe2+. The addition of ADP resulted in slight inhibition of activity, however, the activity was less sensitive to inhibition by mannitol. At an ADP to Fe2+ molar ratio of 10 to 1, 10 mm mannitol caused 25% inhibition of activity. Lipid peroxidation dependent on the enzymatic generation of superoxide by xanthine oxidase was studied in liposomes and in detergent-dispersed linoleate. No activity was observed in the absence of added iron. Activity and the apparent mechanism of initiation was dependent upon iron chelation. The addition of EDTA-chelated iron to the detergent-dispersed linoleate system resulted in lipid peroxidation as evidenced by diene conjugation. This activity was inhibited by catalase and hydroxyl radical trapping agents. In contrast, no activity was observed with phospholipid liposomes when iron was chelated with EDTA. The peroxidation of liposomes required ADP-chelated iron and activity was stimulated upon the addition of EDTA-chelated iron. The peroxidation of detergent-dispersed linoleate was also enhanced by ADP-chelated iron. Again, this peroxidation in the presence of ADP-chelated iron was not sensitive to catalase or hydroxyl radical trapping agents. It is proposed that initiation of superoxide-dependent lipid peroxidation in the presence of EDTA-chelated iron occurs via the hydroxyl radical. However, in the presence of ADP-chelated iron, the participation of the free hydroxyl radical is minimal.  相似文献   

3.
The Mechanism of Iron (III) Stimulation of Lipid Peroxidation   总被引:1,自引:0,他引:1  
A study conducted on Fe2+ autoxidation showed that its rate was extremely slow at acidic pH values and increased by increasing the pH; it was stimulated by Fe3+ addition but the stimulation did not present a maximum at a Fe2+/Fe3+ ratio approaching 1:1. The species generated during Fe3+-catalyzed Fe2+ autoxidation was able to oxidize deoxyribose; the increased Fe2+ oxidation observed at higher pHs was paralleled by increased deoxyribose degradation. The species generated during Fe3+-catalyzed Fe2+ autoxidation could not initiate lipid peroxidation in phosphatidylcholine liposomes from which lipid hydroperoxides (LOOH) had been removed by treatment with triph-enylphosphine. Neither Fe2+ oxidation nor changes in the oxidation index of the liposomes due to lipid peroxidation were observed at pHs where the Fe3+ effect on Fe2+ autoxidation and on deoxyribose degradation was evident. In our experimental system, a Fe2+/Fe3+ ratio ranging from 1:3 to 2:1 was unable to initiate lipid peroxidation in LOOH-free phosphatidylcholine liposomes. By contrast Fe3+ stimulated the peroxidation of liposomes where increasing amounts of cumene hydroperoxide were incorporated. These results argue against the participation of Fe3+ in the initiation of LOOH-independent lipid peroxidation and suggest its possible involvement in LOOH-dependent lipid peroxidation.  相似文献   

4.
Ferritin-containing fractions with different degrees of iron loading were prepared. All ferritin fractions stimulated the peroxidation of bovine brain phospholipid liposomes, as measured by the formation of thiobarbituric acid-reactive material. This stimulation was increased in the presence of ascorbate. Iron salts of equivalent concentration to those of the ferritin fractions were more stimulatory to lipid peroxidation at the higher iron concentrations. None of the fractions inhibited ascorbate-dependent peroxidation in the presence of added iron salts.  相似文献   

5.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

6.
The effect of calcium ions on the peroxidation of ox-brain phospholipid liposomes in different free-radical catalysing systems has been assessed. Using thiobarbituric acid-reactivity (TBA) as a measure of lipid peroxidation, calcium ions both inhibited and enhanced peroxidation in the different systems.Changing the composition of the ox-brain phospholipid liposome with synthetic non TBA-reactive phosphatidylcholine, significantly altered its susceptibility to peroxidation both in the presence and absence of calcium ions.The results are discussed with reference to the possibility that calcium ions induce conformational changes in membrane phospholipids. Susceptibility to peroxidation is then influenced by a complex interrelationship between the qualitative lipid composition of the membrane, the pro-oxidant catalyst and the presence of calcium or other active ions.  相似文献   

7.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

8.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

9.
The antioxidant effect of alpha-tocopherolquinone and alpha-tocopherolhydroquinone was studied in liposomes and rat liver submitochondrial particles. Both alpha-tocopherolquinone and alpha-tocopherolhydroquinone inhibit lipid peroxidation induced by ascorbate/Fe2+ in liposomes and by cumene hydroperoxide in submitochondrial particles. Alpha-tocopherolhydroquinone is much more effective than alpha-tocopherolquinone in inhibiting lipid peroxidation. Submitochondrial particles, depleted of ubiquinones and reincorporated with alpha-tocopherolquinone, are protected from lipid peroxidation only in the presence of succinate. Alpha-tocopherolquinone cannot replace endogenous ubiquinones in the respiratory chain function, nevertheless it can be reduced by the mitochondrial respiratory chain substrates, presumably through the reduced ubiquinones.  相似文献   

10.
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than α-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than α-tocopherol; (e) to be a weaker antiradical than α-tocopherol in the reduction of the stable radical DPPH·. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like α-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

11.
Egg yolk phosphatidylcholine liposomes were rapidly oxidized in the presence of chelated iron and a superoxide-generating system. alpha-Tocopherol incorporated in the bilayer was oxidized at the same time. No lipid or alpha-tocopherol oxidation occurred in liposomes composed of dimyristoyl phosphatidylcholine. The antioxidant did not inhibit lipid peroxidation until its concentration reached a critical level, which depended on the effectiveness of the oxidative stress. Beyond this level, peroxidation was inhibited completely and, simultaneously, the rate of oxidation of tocopherol was lowered. The results suggest that the antioxidant efficiency of alpha-tocopherol depends on its ability to react mainly with the chain-initiating or chain-propagating lipid radicals. This, in turn, is closely tied to the tocopherol content of the membrane. Ascorbate inhibited the consumption of alpha-tocopherol, possibly by regenerating its reduced form.  相似文献   

12.
In an experimental system where both Fe2+ autoxidation and generation of reactive oxygen species is negligible, the effect of FeCl2 and FeCl3 on the peroxidation of phosphatidylcholine (PC) liposomes containing different amounts of lipid hydroperoxides (LOOH) was studied; Fe2+ oxidation, oxygen consumption and oxidation index of the liposomes were measured. No peroxidation was observed at variable FeCl2/FeCl3 ratio when PC liposomes deprived of LOOH by triphenyl-phosphine treatment were utilized. By contrast, LOOH containing liposomes were peroxidized by FeCl2. The FeCl2 concentration at which Fe2+ oxidation was maximal, defined as critical Fe2+ concentration [Fe2+]*, depended on the LOOH concentration and not on the amount of PC liposomes in the assay. The LOOH-dependent lipid peroxidation was stimulated by FeCl3, addition; the oxidized form of the metal increased the average length of radical chains, shifted to higher values the [Fe2+]* and shortened the latent period. The iron chelator KSCN exerted effects opposite to those exerted by FeCl3 addition. The experimental data obtained indicate that the kinetics of LOOH-dependent lipid peroxidation depends on the Fe2+/Fe3+ ratio at each moment during the time course of lipid peroxidation. The results confirm that exogenously added FeCl3 does not affect the LOOH-independent but the LOOH-deendent lipid peroxidation; and suggest that the Feg, endogenously generated exerts a major role in the control of the LOOH-dependent lipid peroxidation.  相似文献   

13.
The generation of hydroxyl free radicals in 60Co gamma-irradiation of a dilute aqueous suspension of phosphatidyl choline liposomes, resulted in the rapid accumulation of lipid hydroperoxides (linearly with time), but only small concentrations of malondialdehyde. Incubation of the irradiated liposomes with ferric chloride was found to significantly increase the malondialdehyde, and evidence is presented that this resulted from iron catalysed decomposition of the lipid hydroperoxide. This suggests a role for free iron or iron chelates in the propagation of lipid peroxidation stimulated by other systems.  相似文献   

14.
Intermembrane transfer and exchange of tocopherol are not well understood. To study this we tested the ability of alpha-tocopherol containing unilamellar donor liposomes to inhibit the accumulation of lipid peroxidation products in acceptor liposomes. With molar ratios of alpha-tocopherol:phospholipids from 1:100 to 1:1000 in donor liposomes prepared by sonication of lipid dispersions, alpha-tocopherol was incorporated into both monolayers and was homogenously distributed in monomeric form without forming clusters in the liposomes. Concentrations of alpha-tocopherol which completely prevented the peroxidation of lipids were chosen for donor liposomes. Hence inhibition of lipid peroxidation in mixtures of donor and acceptor liposomes was determined by the antioxidant effect of alpha-tocopherol in acceptor liposomes which resulted from intermembrane transfer and exchange of alpha-tocopherol. Evidence was obtained that this was not due to fusion of donor with acceptor liposomes. The efficiency of the "intermembrane" antioxidant action of tocopherol was more pronounced when donor liposomes contained unsaturated phospholipids, indicating that the presence of unsaturated fatty acids in the outer monolayer phospholipids facilitates intermembrane tocopherol exchange.  相似文献   

15.
Ferritin and haemosiderin were shown, by the measurement of malondialdehyde production and loss of polyunsaturated fatty acids, to stimulate lipid peroxidation in liposomes. At pH 7.4 ascorbate was additionally required to achieve peroxidation; however, peroxidation occurred at pH 4.5 in the presence of iron-proteins alone. The damage was completely inhibited by the incorporation of chain-breaking antioxidants (alpha-tocopherol and butylated hydroxytoluene) into the liposomes. Metal chelators (desferrioxamine and EDTA) also completely inhibited lipid peroxidation. These and further results indicate that, at pH 4.5, even in the absence of a reducing agent, iron is released from haemosiderin and can mediate oxidative damage to a lipid membrane.  相似文献   

16.
Phospholipid peroxidation of unsaturated phospholipid liposomes in the tyrosinase(mushroom)-4-hydroxyanisole system was studied in both the presence and absence of Fe3+, as a model of melanocyte damage by this agent. Ferric ion is required for the lipid peroxidation, and maximal lipid peroxidation was achieved with a molar ratio of [Fe3+]/[4-hydroxyanisole] of about 1. The lipid peroxidation was significantly inhibited by ceruloplasmin (a ferroxidase), indicating that Fe3+, which would be coordinated with metabolites, catechols, should be reduced to express its oxidant property. Judging from the results obtained with inhibitors or scavengers of active oxygen species, O2-, H2O2, and .OH would not mainly involve in the lipid peroxidation.  相似文献   

17.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

18.
《Free radical research》2013,47(1):153-159
Ceruloplasmin (CP) effectively inhibited superoxide and ferritin-dependent peroxidation of phospholipid liposomes, using xanthine oxidase or gamma irradiation of water as sources of superoxide. In addition, CP inhibited superoxide-dependent mobilization of iron from ferritin. suggesting that CP inhibited lipid peroxidation by decreasing the availability of iron from ferritin. CP also exhibited some superoxide scavenging activity as evidenced by its inhibition of superoxide-dependent cytochrome c reduction. However, superoxide scavenging by CP did not quantitatively account for its inhibitory effects on iron release. The effects of CP on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. CP exhibited prooxidant and antioxidant effects; CP stimulated at lower concentrations, reached a maximum. and inhibited at higher concentrations. However. the addition of apoferritin inhibited CP and Fe(II)-catalyzed lipid peroxidation at all concentrations of CP. In addition, CP catalyzed the incorporation of Fe(II) into apoferritin. Collectively these data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation via its ability to incorporate reductively-mobilized iron into ferritin.  相似文献   

19.
Hematin- and peroxide-catalyzed peroxidation of phospholipid liposomes   总被引:3,自引:0,他引:3  
The effect of hydroperoxides on hematin-catalyzed initiation and propagation of lipid peroxidation was examined utilizing soybean phosphatidylcholine liposomes as model membranes. Polarographic and spectrophotometric methods revealed a bimodal pseudocatalytic activity for hematin. A slow initiation phase of peroxidation was observed in the presence of low peroxide concentrations, whereas a fast propagative phase was observed at higher peroxide levels. Peroxide levels were manipulated enzymatically by the combination of phospholipase A2 and lipoxidase or by the direct addition of linoleic acid hydroperoxide, cumene hydroperoxide, or hydrogen peroxide. In addition, the effect of two different techniques for liposome preparation, i.e., sonication and extrusion, were compared on the basis of peroxidation kinetics. High pressure liquid chromatography analysis showed that sonicated liposomes contained higher levels of endogenous peroxides than the extruded ones. These sonicated liposomes also exhibited more rapid peroxidation following hematin addition. Extruded liposomes were more resistant to hematin-catalyzed peroxidation but became better substrates when exogenous hydroperoxides were added. All three peroxides reacted with hematin during which decomposition of peroxide and irreversible oxidation of hematin took place. Spectral analysis of hematin indicated that a higher oxidation state of hematin iron may be transiently formed during reaction with hydroperoxides and accounts for the propagation of lipid peroxidation when reactions proceed in the presence of soybean phosphatidylcholine liposomes. Of the three peroxides studied, linoleic acid hydroperoxide was most efficient in supporting hematin-catalyzed lipid peroxidation. The relevance of our findings is discussed in terms of the concentration dependence for lipid peroxides in determining the rate and extent of radical propagation chain reactions catalyzed by heme-iron catalysts such as hematin. Variation of hematin and linoleic hydroperoxide concentrations may provide an efficient and reproducible method for inducing and manipulating the rates and extent of lipid peroxidation through facilitation of the propagative phase of lipid peroxidation. In addition, we address a problem inherent to in vitro studies of heme-catalyzed lipid peroxidation where preparations of peroxide-free membranes should be of concern.  相似文献   

20.
Oxidation of ferrous iron during peroxidation of lipid substrates   总被引:3,自引:0,他引:3  
Oxidation of Fe2+ in solution was dependent upon medium composition and the presence of lipid. The complete oxidation of Fe2+ in 0.9% saline was markedly accelerated in the presence of phosphate or EDTA and the ferrous oxidation product formed was readily recoverable as Fe2+ by ascorbate reduction. In contrast, in the presence of either brain synaptosomal membranes, phospholipid liposomes, fatty acid micelles or H2O2, less than 50% of the Fe2+ oxidized during an incubation could be recovered as Fe2+ via reduction with ascorbate. In the presence of unsaturated lipid, oxidation of Fe2+ was associated with peroxidation of lipid, as assessed by the uptake of O2 and formation of thiobarbituric acid-reactive products during incubations. Although relatively little Fe2+ oxidation or lipid peroxidation occurred in saline with synaptosomes or linoleic acid micelles during an incubation with Fe2+ alone, significant Fe2+ oxidation and lipid peroxidation occurred in incubations containing a 1:1 ratio of Fe2+ and Fe3+. Extensive Fe2+ oxidation and lipid peroxidation also occurred with Fe2+ alone in saline incubations with either linolenic or arachidonic acid acid micelles or liposomes prepared from dilinoleoylphosphatidylcholine. While a 1:1 ratio of Fe2+ and Fe3+ enhanced thiobarbituric acid-reactive product formation in incubations containing linolenic or arachidonic micelles, it reduced the rate of O2 consumption as compared with Fe2+ alone. The results demonstrate that oxidation of Fe2+ in incubations containing lipid substrates is linked to and accelerated by peroxidation of those substrates. Furthermore, the results suggest that oxidation of Fe2+ in the presence of lipid or H2O2 creates forms of iron which differ from those formed during simple Fe2+ autoxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号