首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest fire dramatically affects the carbon storage and underlying mechanisms that control the carbon balance of recovering ecosystems. In western North America where fire extent has increased in recent years, we measured carbon pools and fluxes in moderately and severely burned forest stands 2 years after a fire to determine the controls on net ecosystem productivity (NEP) and make comparisons with unburned stands in the same region. Total ecosystem carbon in soil and live and dead pools in the burned stands was on average 66% that of unburned stands (11.0 and 16.5 kg C m−2, respectively, P<0.01). Soil carbon accounted for 56% and 43% of the carbon pools in burned and unburned stands. NEP was significantly lower in severely burned compared with unburned stands (P<0.01) with an increasing trend from −125±44 g C m−2 yr−1 (±1 SD) in severely burned stands (stand replacing fire), to −38±96 and +50±47 g C m−2 yr−1 in moderately burned and unburned stands, respectively. Fire of moderate severity killed 82% of trees <20 cm in diameter (diameter at 1.3 m height, DBH); however, this size class only contributed 22% of prefire estimates of bole wood production. Larger trees (> 20 cm DBH) suffered only 34% mortality under moderate severity fire and contributed to 91% of postfire bole wood production. Growth rates of trees that survived the fire were comparable with their prefire rates. Net primary production NPP (g C m−2 yr−1, ±1 SD) of severely burned stands was 47% of unburned stands (167±76, 346±148, respectively, P<0.05), with forb and grass aboveground NPP accounting for 74% and 4% of total aboveground NPP, respectively. Based on continuous seasonal measurements of soil respiration in a severely burned stand, in areas kept free of ground vegetation, soil heterotrophic respiration accounted for 56% of total soil CO2 efflux, comparable with the values of 54% and 49% previously reported for two of the unburned forest stands. Estimates of total ecosystem heterotrophic respiration (Rh) were not significantly different between stand types 2 years after fire. The ratio NPP/Rh averaged 0.55, 0.85 and 1.21 in the severely burned, moderately burned and unburned stands, respectively. Annual soil CO2 efflux was linearly related to aboveground net primary productivity (ANPP) with an increase in soil CO2 efflux of 1.48 g C yr−1 for every 1 g increase in ANPP (P<0.01, r2= 0.76). There was no significant difference in this relationship between the recently burned and unburned stands. Contrary to expectations that the magnitude of NEP 2 years postfire would be principally driven by the sudden increase in detrital pools and increased rates of Rh, the data suggest NPP was more important in determining postfire NEP.  相似文献   

2.
Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict seasonal trajectories of HR. We investigated the spatial and temporal variability of HR across multiple years in two old-growth coniferous forest ecosystems with contrasting species and moisture regimes by measurement of soil water content (theta) and water potential (Psi) throughout the upper soil profile, root distribution and conductivity, and relevant climate variables. Large HR variability within sites (0-0.5 mm d(-1)) was attributed to spatial patterns of roots, soil moisture and depletion. HR accounted for 3-9% of estimated total site water depletion seasonally, peaking at 0.16 mm d(-1) (ponderosa pine; Pinus ponderosa) or 0.30 mm d(-1) (Douglas-fir; Pseudotsuga menziesii), then declining as modeled pathway conductance dropped with increasing root cavitation. While HR can vary tremendously within a site, among years and among ecosystems, this variability can be explained by natural variability in Psi gradients and seasonal courses of root conductivity.  相似文献   

3.
The first objective of the present study was to quantify the effects of tree age and stem position on specific conductivity (ks), vulnerability to embolism and water storage capacity (capacitance) in trunks of young, mature and old‐growth ponderosa pine. The second objective was to determine relationships between hydraulic characteristics and radial and height growth rates to increase the understanding of possible tradeoffs. Within sapwood at all heights and in all ages of trees, outer sapwood had 25–60% higher ks than inner sapwood. The water potential at which embolism started (air entry point) was 1.3 MPa lower in inner sapwood than outer sapwood within the mature trees, but there was no difference in the other trees. There was no significant difference in capacitances between the tops of the old growth trees, the mature trees and the young trees. Taking all data together, the capacitances increased sharply with an increase in ks and an increase in vulnerability to embolism. The hydraulic characteristics of the three age classes were correlated with the height growth rate but not with the diameter growth rate. Within these age classes, high ks was associated with the slowest yearly increase in sapwood area and with a low percentage of latewood, whereas high vulnerability to embolism and high capacitance were more closely associated with high height growth rates.  相似文献   

4.
5.
The purpose of this paper is to describe the effects of CO2 and N treatments on soil pCO2, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO2 and N would cause increased root biomass which would in turn cause increases in both total soil CO2 efflux and microbial respiration. This hypothesis was only supported in part: both CO2 and N treatments caused significant increases in root biomass, soil pCO2, and calculated CO2 efflux, but there were no differences in soil microbial respiration measured in the laboratory. Both correlative and quantitative comparisons of CO2 efflux rates indicated that microbial respiration contributes little to total soil CO2 efflux in the field. Measurements of soil pCO2 and calculated CO2 efflux provided inexpensive, non-invasive, and relatively sensitive indices of belowground response to CO2 and N treatments.  相似文献   

6.
Ponderosa pine has very wide sapwood, and yet the spatial and temporal use of that sapwood for water transport is poorly understood. Moreover, there have been few comparisons of function in tips of old-growth trees in comparison with young trees. In the present study, axial and radial specific conductivity (ks), leaf specific conductivity (LSC), leaf specific conductance (kl), native embolism and the compartmentalization of sapwood water storage were characterized in trunks of young and old-growth trees. Trunks of young trees had lower ks, lower LSC and lower native embolism [corresponding to 5% loss of conductivity (PLC)] than trunks of old-growth trees. However, kl in young trees was 3.5 times higher than in old-growth trees, supporting the hypothesis that tall trees have a reduced ability to transport water to their leaves. Water storage (capacitance) of young trees was not significantly different than at the base of old-growth trees. Although the top of the old-growth trees had similar ks, LSC and kl to the young trees for a given cambial age, they had higher native embolism and lower capacitance. There was no trade-off between ks and native embolism at any height. In the tree crown, outer sapwood had 35–50% higher ks than the inner sapwood and 17–25 PLC lower native embolism. At the base of the old trees, there was no significant difference in native embolism between the outer, middle and inner sapwood, showing that refilling of embolisms was complete despite the 130-year difference in wood age among these radial positions. Although during the dry season the inner sapwood tended to be more saturated than the outer sapwood, the outer part of the sapwood contributed up to 60% of the overall stored water. Safer xylem, higher capacitance and higher kl would appear adaptive in the young trees for regulating their water resource, which is likely to be less reliable than the water availability of older trees with their more developed root system.  相似文献   

7.
8.
We examined a 6‐year record of automated chamber‐based soil CO2 efflux (Fs) and the underlying processes in relation to climate and canopy gas exchange at an AmeriFlux site in a seasonally drought‐stressed pine forest. Interannual variability of Fs was large (CV=17%) with a range of 427 g C m?2 yr?1 around a mean annual Fs of 811 g C m?2 yr?1. On average, 76% of the variation of daily mean Fs could be quantified using an empirical model with year‐specific basal respiration rate that was a linear function of tree basal area increment (BAI) and modulated by a common response to soil temperature and moisture. Interannual variability in Fs could be attributed almost equally to interannual variability in BAI (a proxy for above‐ground productivity) and interannual variability in soil climate. Seasonal total Fs was twice as sensitive to soil moisture variability during the summer months compared with temperature variability during the same period and almost insensitive to the natural range of interannual variability in spring temperatures. A strong seasonality in both root respiration (Rr) and heterotrophic respiration (Rh) was observed with the fraction attributed to Rr steadily increasing from 18% in mid‐March to 50% in early June through early July before dropping rapidly to 10% of Fs by mid‐August. The seasonal pattern in Rr (10‐day averages) was strongly linearly correlated with tree transpiration (r2=0.90, P<0.01) as measured using sap flux techniques and gross ecosystem productivity (GEP, r2=0.83, P<0.01) measured by the eddy‐covariance approach. Rr increased by 0.43 g C m?2 day?1 for every 1 g C m?2 day?1 increase in GEP. The strong linear correlation of Rr to seasonal changes in GEP and transpiration combined with longer‐term interannual variability in the base rate of Fs, as a linear function of BAI (r2=0.64, P=0.06), provides compelling justification for including canopy processes in future models of Fs.  相似文献   

9.
10.
Walker  R.F.  Geisinger  D.R.  Johnson  D.W.  Ball  J.T. 《Plant and Soil》1997,195(1):25-36
Interactive effects of atmospheric CO2 enrichment and soil N fertility on above- and below-ground development and water relations of juvenile ponderosa pine (Pinus ponderosa Dougl. ex Laws.) were examined. Open-top field chambers permitted creation of atmospheres with 700 µL L-1, 525 µL L-1, or ambient CO2 concentrations. Seedlings were reared from seed in field soil with a total N concentration of approximately 900 µg g-1 or in soil amended with sufficient (NH4)2SO4 to increase total N by 100 µg g-1 or 200 µg g-1. The 525 µL L-1 CO2 treatment within the intermediate N treatment was excluded from the study. Following each of three consecutive growing seasons, whole seedlings of each combination of CO2 and N treatment were harvested to permit assessment of shoot and root growth and ectomycorrhizal colonization. In the second and third growing seasons, drought cycles were imposed by withholding irrigation during which predawn and midday xylem water potential and soil water potential were measured. The first harvest revealed that shoot weight and coarse and fine root weights were increased by growth in elevated CO2. Shoot and root volume and weights were increased by CO2 enrichment at the second harvest, but growth stimulation by the 525 µL L-1 CO2 concentration exceeded that in 700 µL L-1 CO2 during the first two growing seasons. At the third harvest, above- and below-ground growth increases were largely confined to the 700 µL L-1 CO2 treatment, an effect accentuated by high soil N but evident in all N treatments. Ectomycorrhizal formation was reduced by elevated CO2 after one growing season, but thereafter was not significantly affected by CO2 and was unaffected by soil N throughout the study. Results of the xylem water potential measurements were variable, as water potentials in seedlings grown in elevated CO2 were intermittently higher on some measurement days but lower on others than that of seedlings grown in the ambient atmosphere. These results suggest that elevated CO2 exerts stimulatory effects on shoot and root growth of juvenile ponderosa pine under field conditions which are somewhat dependent on N availability, but that temporal variation may periodically result in a greater response to a moderate rise in atmospheric CO2 than to a doubling of the current ambient concentration.  相似文献   

11.
We grew loblolly and ponderosa pine seedlings in a factorial experiment with two CO2 partial pressures (35 and 70 Pa), and two nitrogen treatments (1.0 and 3.5 mol m?3 NH4+), for one growing season to examine the effects of carbon and nitrogen availability on leaf construction cost. Growth in elevated CO2 reduced leaf nitrogen concentrations by 17 to 40%, and increased C:N by 22 to 68%. Elevated N availability increased leaf N concentrations and decreased C:N. Non-structural carbohydrates increased in high-CO2-grown loblolly seedlings, except in fascicles from low N, and in ponderosa primary and fascicle leaves grown in high N. In loblolly, increases in starch were nearly 2-fold greater than the increases in soluble sugars. In ponderosa, only the soluble sugars were affected by CO2. Leaf construction cost (g glucose g?1 dm) varied by 9.3% across all treatments. All of the variation in loblolly leaf construction cost could be explained by changes in non-structural carbohydrates. A model of the response of construction cost to changes in the mass of different biochemical fractions suggests that the remainder of the variation in ponderosa, not explained by non-structural carbohydrates, is probably attributable to changes in lignin, phenolic or protein concentrations.  相似文献   

12.
13.
Seasonal and annual respiration of a ponderosa pine ecosystem   总被引:2,自引:0,他引:2  
The net ecosystem exchange of CO2 between forests and the atmosphere, measured by eddy covariance, is the small difference between two large fluxes of photosynthesis and respiration. Chamber measurements of soil surface CO2 efflux (Fs), wood respiration (Fw) and foliage respiration (Ff) help identify the contributions of these individual components to net ecosystem exchange. Models developed from the chamber data also provide independent estimates of respiration costs. We measured CO2 efflux with chambers periodically in 1996–97 in a ponderosa pine forest in Oregon, scaled these measurements to the ecosystem, and computed annual totals for respiration by component. We also compared estimated half-hourly ecosystem respiration at night (Fnc) with eddy covariance measurements. Mean foliage respiration normalized to 10 °C was 0.20 μmol m–2 (hemi-leaf surface area) s–1, and reached a maximum of 0.24 μmol m–2 HSA s–1 between days 162 and 208. Mean wood respiration normalized to 10 °C was 5.9 μmol m–3 sapwood s–1, with slightly higher rates in mid-summer, when growth occurs. There was no significant difference (P > 0.10) between wood respiration of young (45 years) and old trees (250 years). Soil surface respiration normalized to 10 °C ranged from 0.7 to 3.0 μmol m–2 (ground) s–1 from days 23 to 329, with the lowest rates in winter and highest rates in late spring. Annual CO2 flux from soil surface, foliage and wood was 683, 157, and 54 g C m–2 y–1, with soil fluxes responsible for 76% of ecosystem respiration. The ratio of net primary production to gross primary production was 0.45, consistent with values for conifer sites in Oregon and Australia, but higher than values reported for boreal coniferous forests. Below-ground carbon allocation (root turnover and respiration, estimated as Fs– litterfall carbon) consumed 61% of GPP; high ratios such as this are typical of sites with more water and nutrient constraints. The chamber estimates were moderately correlated with change in CO2 storage in the canopy (Fstor) on calm nights (friction velocity u* < 0.25 m s–1; R2 = 0.60); Fstor was not significantly different from summed chamber estimates. On windy nights (u* > 0.25 m s–1), the sum of turbulent flux measured above the canopy by eddy covariance and Fstor was only weakly correlated with summed chamber estimates (R2 = 0.14); the eddy covariance estimates were lower than chamber estimates by 50%.  相似文献   

14.
Disturbance legacies structure communities and ecological memory, but due to increasing changes in disturbance regimes, it is becoming more difficult to characterize disturbance legacies or determine how long they persist. We sought to quantify the characteristics and persistence of material legacies (e.g., biotic residuals of disturbance) that arise from variation in fire severity in an eastern ponderosa pine forest in North America. We compared forest stand structure and understory woody plant and bird community composition and species richness across unburned, low‐, moderate‐, and high‐severity burn patches in a 27‐year‐old mixed‐severity wildfire that had received minimal post‐fire management. We identified distinct tree densities (high: 14.3 ± 7.4 trees per ha, moderate: 22.3 ± 12.6, low: 135.3 ± 57.1, unburned: 907.9 ± 246.2) and coarse woody debris cover (high: 8.5 ± 1.6% cover per 30 m transect, moderate: 4.3 ± 0.7, low: 2.3 ± 0.6, unburned: 1.0 ± 0.4) among burn severities. Understory woody plant communities differed between high‐severity patches, moderate‐ and low‐severity patches, and unburned patches (all p < 0.05). Bird communities differed between high‐ and moderate‐severity patches, low‐severity patches, and unburned patches (all p < 0.05). Bird species richness varied across burn severities: low‐severity patches had the highest (5.29 ± 1.44) and high‐severity patches had the lowest (2.87 ± 0.72). Understory woody plant richness was highest in unburned (5.93 ± 1.10) and high‐severity (5.07 ± 1.17) patches, and it was lower in moderate‐ (3.43 ± 1.17) and low‐severity (3.43 ± 1.06) patches. We show material fire legacies persisted decades after the mixed‐severity wildfire in eastern ponderosa forest, fostering distinct structures, communities, and species in burned versus unburned patches and across fire severities. At a patch scale, eastern and western ponderosa system responses to mixed‐severity fires were consistent.  相似文献   

15.
Better understanding of variation in soil carbon dioxide (CO2) efflux caused by measurement techniques is needed, especially over gradients of site disturbance, to accurately estimate the global carbon cycle. We present soil CO2 efflux data from a gradient of disturbance to ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests in northern Arizona, USA that were obtained using four different techniques: vented static chambers, a Licor 6400‐09, and soil CO2 diffusion profiles using two different models (Moldrup, Millington–Quirk) to estimate soil gas diffusivity. We also compared soil CO2 efflux measured by the Moldrup and Millington–Quirk diffusion profile methods to nighttime total ecosystem respiration (TER) data from an eddy covariance tower. We addressed four questions: (1) Does the use of a given method to measure soil CO2 efflux bias results across a disturbance gradient? (2) Does the magnitude of difference between observed and modeled estimates of soil CO2 differ between methods and across sites? (3) What is the spatial variability of each method at each site? (4) Which method is closest to the estimate of TER measured by the eddy covariance tower? Although soil CO2 efflux varied significantly among methods the differences were consistent among sites. Measured and modeled total growing season fluxes were generally higher for the Licor 6400‐09 and Millington–Quirk diffusion gradient methods compared with static chamber and the Moldrup diffusion gradient methods. A power analysis showed that the larger static chamber was the most efficient method at sampling spatial variation in soil CO2 efflux. Nighttime measurements of soil CO2 efflux from the Moldrup diffusion gradient method were most strongly related to nighttime TER assessed with eddy covariance. The use of a single, well‐implemented method to measure soil CO2 efflux is unlikely to create bias in comparisons across a gradient of forest disturbance.  相似文献   

16.
The b/c intron of the mitochondrial nad1 gene, was sequenced to characterize the indel region of ponderosa pine, Pinus ponderosa. The sequence in ponderosa pine was aligned with the sequence in Scots pine, Pinus sylvestris, to design seven primers that are useful for sequencing and for revealing size variation in amplified fragments in ponderosa pine, Scots pine, and limber pine, Pinus flexilis. These primers reveal variability in all three species, and the pattern of variability within ponderosa pine is described by a preliminary survey. The indel region of ponderosa pine contains three distinct elements with lengths of 31, 32, and 34 bp. Received: 1 March 2000 / Accepted: 14 April 2000<@head-com-p1a.lf>Communicated by P.M.A. Tigerstedt  相似文献   

17.
We analyzed 17 months (August 2005 to December 2006) of continuous measurements of soil CO2 efflux or soil respiration (RS) in an 18‐year‐old west‐coast temperate Douglas‐fir stand that experienced somewhat greater than normal summertime water deficit. For soil water content at the 4 cm depth (θ) > 0.11 m3 m?3 (corresponding to a soil water matric potential of ?2 MPa), RS was positively correlated to soil temperature at the 2 cm depth (TS). Below this value of θ, however, RS was largely decoupled from TS, and evapotranspiration, ecosystem respiration and gross primary productivity (GPP) began to decrease, dropping to about half of their maximum values when θ reached 0.07 m3 m?3. Soil water deficit substantially reduced RS sensitivity to temperature resulting in a Q10 significantly < 2. The absolute temperature sensitivity of RS (i.e. dRS/dTS) increased with θ up to 0.15 m3 m?3, above which it slowly declined. The value of dRS/dTS was nearly 0 for θ < 0.08 m3 m?3, thereby confirming that RS was largely unaffected by temperature under soil water stress conditions. Despite the possible effects of seasonality of photosynthesis, root activity and litterfall on RS, the observed decrease in its temperature sensitivity at low θ was consistent with the reduction in substrate availability due to a decrease in (a) microbial mobility, and diffusion of substrates and extracellular enzymes, and (b) the fraction of substrate that can react at high TS, which is associated with low θ. We found that an exponential (van't Hoff type) model with Q10 and R10 dependent on only θ explained 92% of the variance in half‐hourly values of RS, including the period with soil water stress conditions. We hypothesize that relating Q10 and R10 to θ not only accounted for the effects of TS on RS and its temperature sensitivity but also accounted for the seasonality of biotic (photosynthesis, root activity, and litterfall) and abiotic (soil moisture and temperature) controls and their interactions.  相似文献   

18.
Much of the previous research on spatial reference conditions in dry frequent fire pine forests have come from stand‐level patterns under regionally average ecosystem conditions (e.g. soil type and precipitation). We evaluated the 1883 reference conditions of an uncut ponderosa pine stand representing a far end of the range of variability in terms of regionally unusual environmental conditions. Using a forest reconstruction model, univariate and bivariate Ripley's K functions, and regression analysis, we determined 1883 structural and spatial reference conditions, and compared those to the contemporary (2010) stand. Historical stand density was 77 trees/ha with a basal area of 8.0 m2/ha. Reference spatial patterns were significantly aggregated from 1 to 2 m and randomly distributed at distances greater than 2 m. Nearly 40% of the reconstructed trees were individuals, the average patch size was 2.9 trees, and the largest patch had 7 members. The contemporary stand had considerably greater densities and basal area than historical conditions and showed aggregation at all distances. Bivariate spatial analysis indicated attraction of post‐settlement recruitment to live pre‐settlement trees from 1 to 6 m and no association at distances greater than 6 m. We speculate that the historically random tree pattern is the product of a variety of factors including soil parent material, climate, and more homogeneous resource partitioning.  相似文献   

19.
Supply-side controls on soil respiration among Oregon forests   总被引:3,自引:0,他引:3  
To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types. Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P>0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P<0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P<0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross‐site trends. These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.  相似文献   

20.
We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome‐BGC simulations of fluxes. The young forest (Y site) was previously an old‐growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m?2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m?2 year?1), and it was largely from soils at both sites (77% of Re). The biological data show that above‐ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m?2 year?1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15‐km swath in the region, ANPP ranged from 76 g C m?2 year?1 at the Y site to 236 g C m?2 year?1 (overall mean 158 ± 14 g C m?2 year?1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome‐BGC model suggest that disturbance type and frequency, time since disturbance, age‐dependent changes in below‐ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget‐based observations to within ± 20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand‐replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10–20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long‐term pools (biomass and soils) in addition to short‐term fluxes has important implications for management of forests in the Pacific North‐west for carbon sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号