首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The addition of mitochondria to an incubation system containing the soluble and microsomal fractions of rat liver enhances severalfold the incorporation of each of ethanolamine, phosphorylethanolamine and CDP-ethanolamine into phosphatidylethanolamine. 2. In the presence of microsomal, mitochondrial and soluble fractions, CDP-ethanolamine exhibits the greatest initial rate of incorporation (approx. 6nmol/h per mg of protein), being slightly faster than that of phosphorylethanolamine (approx. 5nmol/h per mg of protein). Incorporation of ethanolamine proceeds very slowly for the first 20min and only after 30min gives rates approaching those of the other two precursors. 3. By using a substrate ;dilution' technique it was shown that in the reconstituted system the affinity of each of the enzymes for their respective substrates is very high: 10mum for ethanolamine, 25mum for phosphorylethanolamine and 5mum for CDP-ethanolamine. 4. Isolation of the mitochondrial and microsomal fractions from the medium after incubation together with phosphorylethanolamine showed that about 70% of the total radioactivity was present in the microsomal fraction and about 30% in the mitochondria after only 20min. Similar experiments with ethanolamine as precursor revealed that after 20min only about 15% of the total radioactivity was present in the mitochondria but that after 40min about 30% was present in this fraction. 5. Heating and phospholipase treatment of mitochondria, but not freeze-thawing, eliminated the stimulatory effect of mitochondria on phospholipid synthesis. 6. The reconstituted system exhibits an absolute requirement for Mg(2+) (2mm gave maximal rates) and is inhibited by very low concentrations of Ca(2+) (100mum-Ca(2+) produced half-maximal inhibition with 3mm-Mg(2+)). Further addition of Mg(2+) overcame the Ca(2+) inhibition, suggesting that the inhibitory effect is readily reversible. 7. The concept that modification of the Mg(2+)/Ca(2+) ratio is a means of controlling the rate of cellular phospholipid synthesis is introduced.  相似文献   

2.
Abstract— Adult rabbits were injected intraventricularly with [14C]ethanolamine and the incorporation of the base into the phosphatidylethanolamine and ethanolamine plasmalogen (and their water-soluble precursors) of isolated neuronal and glial cells was investigated. All the radioactivity was incorporated into the base moiety of the ethanolamine lipids for the time intervals examined in both types of cells. In neurons, maximum labelling of the two ethanolamine lipids occurred at 7 h after administration, whereas the highest specific radioactivity for glial phosphatidylethanolamine and ethanolamine plasmalogen was reached at 20 and 36 h, respectively. The two lipids had a faster turnover in neurons than in glia, and in both populations incorporated the base at a faster rate than did whole brain tissue. The maximum incorporation rates for phosphorylethanolamine and CDP-ethanolamine were reached in both types of cell at about 6 h after administration but the content of radioactivity per unit protein for phosphorylethanolamine was much higher in glial than in neuronal cells. It is concluded that the site of most active synthesis of ethanolamine phospholipids in vivo is the neuronal cell, with a possible transfer of intact lipid molecule to the glial compartment.  相似文献   

3.
A variety of eukaryotic cell surface proteins, including the variant surface glycoproteins of African trypanosomes, rely on a covalently attached lipid, glycosylphosphatidylinositol (GPI), for membrane attachment. GPI anchors are synthesized in the endoplasmic reticulum by stepwise glycosylation of phosphatidylinositol (via UDP-GlcNAc and dolichol-P-mannose) followed by the addition of phosphoethanolamine. The experiments described in this paper are aimed at identifying the biosynthetic origin of the terminal phosphoethanolamine group. We show that trypanosome GPIs can be labelled via CDP-[3H]ethanolamine or [beta-32P]CDP-ethanolamine in a cell-free system, indicating that phosphoethanolamine is acquired en bloc. In pulse-chase experiments with CDP-[3H]ethanolamine we show that the GPI phosphoethanolamine is not derived directly from CDP-ethanolamine, but instead from a relatively stable metabolite, such as phosphatidylethanolamine (PE), generated from CDP-ethanolamine in the cell-free system. To test the possibility that PE is the immediate donor of the GPI phosphoethanolamine moiety, we describe metabolic labelling experiments with [3H]serine and show that GPIs can be labelled in the absence of detectable radiolabelled CDP-ethanolamine, presumably via [3H]PE generated from [3H]phosphatidylserine (PS). The data support the proposal that the terminal phosphoethanolamine group in trypanosome GPIs is derived from PE.  相似文献   

4.
We reported in a recent publication that hexadecylphosphocholine (HePC), a lysophospholipid analogue, reduces cell proliferation in HepG2 cells and at the same time inhibits the biosynthesis of phosphatidylcholine (PC) via CDP-choline by acting upon CTP:phosphocholine cytidylyltransferase (CT). We describe here the results of our study into the influence of HePC on other biosynthetic pathways of glycerolipids. HePC clearly decreased the incorporation of the exogenous precursor [1,2,3-3H]glycerol into PC and phosphatidylserine (PS) whilst increasing that of the neutral lipids diacylglycerol (DAG) and triacylglycerol (TAG). Interestingly, the uptake of L-[3-3H]serine into PS and other phospholipids remained unchanged by HePC and neither was the activity of either PS synthase or PS decarboxylase altered, demonstrating that the biosynthesis of PS is unaffected by HePC. We also analyzed the water-soluble intermediates and final product of the CDP-ethanolamine pathway and found that HePC caused an increase in the incorporation of [1,2-14C]ethanolamine into CDP-ethanolamine and phosphatidylethanolamine (PE) and a decrease in ethanolamine phosphate, which might be interpreted in terms of a stimulation of CTP:phosphoethanolamine cytidylyltransferase activity. Since PE can be methylated to give PC, we studied this process further and observed that HePC decreased the synthesis of PC from PE by inhibiting the PE N-methyltransferase activity. These results constitute the first experimental evidence that the inhibition of the synthesis of PC via CDP-choline by HePC is not counterbalanced by any increase in its formation via methylation. On the contrary, in the presence of HePC both pathways seem to contribute jointly to a decrease in the overall synthesis of PC in HepG2 cells.  相似文献   

5.
Exposure of isolated rat hepatocytes to glucagon or chlorophenylthio cyclic AMP led to an inhibition of the incorporation of [1,2-14C]ethanolamine into phosphatidylethanolamine. Pulse-chase experiments and measurement of the activities of the enzymes involved in the CDP-ethanolamine pathway provided evidence that the inhibitory effect of glucagon on the synthesis de novo of phosphatidylethanolamine was not caused by a diminished conversion of ethanolamine phosphate into CDP-ethanolamine. The observations suggested that the glucagon-induced inhibition of the biosynthesis of phosphatidylethanolamine is probably due to a decreased supply of diacylglycerols, resulting in a decreased formation of phosphatidylethanolamine from CDP-ethanolamine and diacylglycerols.  相似文献   

6.
In this study, we examined the contribution of the four different pathways of phosphatidylethanolamine (PE) synthesis in the yeast Saccharomyces cerevisiae to the supply of this phospholipid to the plasma membrane. These pathways of PE formation are decarboxylation of phosphatidylserine (PS) by (i) phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria and (ii) phosphatidylserine decarboxylase 2 (Psd2p) in a Golgi/vacuolar compartment, (iii) incorporation of exogenous ethanolamine and ethanolamine phosphate derived from sphingolipid catabolism via the CDP-ethanolamine pathway in the endoplasmic reticulum (ER), and (iv) synthesis of PE through acylation of lyso-PE catalyzed by the acyl-CoA-dependent acyltransferase Ale1p in the mitochondria associated endoplasmic reticulum membrane (MAM). Deletion of PSD1 and/or PSD2 led to depletion of total cellular and plasma membrane PE level, whereas mutation in the other pathways had practically no effect. Analysis of wild type and mutants, however, revealed that all four routes of PE synthesis contributed not only to PE formation but also to the supply of PE to the plasma membrane. Pulse-chase labeling experiments with L[3H(G)]serine and [14C]ethanolamine confirmed the latter finding. Fatty acid profiling demonstrated a rather balanced incorporation of PE species into the plasma membrane irrespective of mutations suggesting that all four pathways of PE synthesis provide at least a basic portion of “correct” PE species required for plasma membrane biogenesis. In summary, the PE level in the plasma membrane is strongly influenced by total cellular PE synthesis, but fine tuned by selective assembly mechanisms.  相似文献   

7.
Ethanolamine kinase (EKI) is the first committed step in phosphatidylethanolamine (PtdEtn) biosynthesis via the CDP-ethanolamine pathway. We identify a human cDNA encoding an ethanolamine-specific kinase EKI1 and the structure of the EKI1 gene located on chromosome 12. EKI1 overexpression in COS-7 cells results in a 170-fold increase in ethanolamine kinase-specific activity and accelerates the rate of [3H]ethanolamine incorporation into PtdEtn as a function of the ethanolamine concentration in the culture medium. Acceleration of the CDP-ethanolamine pathway does not result in elevated cellular PtdEtn levels, but rather the excess PtdEtn is degraded to glycerophosphoethanolamine. EKI1 has negligible choline kinase activity in vitro and does not influence phosphatidylcholine biosynthesis. Acceleration of the CDP-ethanolamine pathway also does not change the rate of PtdEtn formation via the decarboxylation of phosphatidylserine. The data demonstrate the existence of separate ethanolamine and choline kinases in mammals and show that ethanolamine kinase can be a rate-controlling step in PtdEtn biosynthesis.  相似文献   

8.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

9.
Cultured NIH 3T3 fibroblasts were employed to investigate the changes in the phospholipid metabolism induced by Ha-ras transformation. All phospholipid fractions were reduced in ras-transformed fibroblasts except phosphatidylethanolamine (PE). The incorporation of labeled choline and ethanolamine into phosphatidylcholine (PC), PE and their corresponding metabolites were elevated in a similar manner in the transformed cells. The enhanced uptake of choline and ethanolamine correlated with the activation of choline kinase and ethanolamine kinase. Similarly, the uptake of arachidonic, oleic and palmitic acids by PC and PE was higher in ras-cells. Acyl-CoA synthetases, which esterify fatty acid before their incorporation into lysophospholipids, were also activated. However, both CTP:phosphocholine-cytidylyltransferase and CTP:phosphoethanolamine-chytidyltransferase were inhibited in the transformed cells. This fact, taken together with the observed activation of choline- and ethanolamine kinases, led to accumulation of phosphocholine and phosphoethanolamine, which have been presumed to participate in the processes of tumor development. PC biosynthesis seemed to be carried out through the CDP-choline pathway, which was stimulated in the oncogenic cells, whereas PE was more likely, a product of phosphatidylserine decarboxylation rather than the CDP-ethanolamine pathway.  相似文献   

10.
Membrane preparations from Saccharomyces cerevisiae catalyze the transfer of phosphoethanolamine and phosphocholine from the cytidine dinucleotide derivatives to endogenous and exogenous 1,2-diacylglycerols. Utilizing CDP-[14C]ethanolamine and CDP-[14C]choline as isotopic substrates, diacylglycerol ethanolaminephosphotransferase (EPT) and diacylglycerol Cholinephosphotransferase (CPT) have been characterized in vitro. Both enzymes (i) require Mn2+; (ii) are stimulated by exogenous 1,2-diacylglycerols; and (iii) are inhibited by p-hydroxymercuribenzoate and CMP. Yeast EPT and CPT can be clearly distinguished on the basis of their different (i) pH optima; (ii) thermal sensitivities at 50 °C; (iii) concentration-dependent inhibition by CMP; and (iv) sensitivities to the hypolipidemic drug, DH-990. Reversibility experiments demonstrate that CDP-ethanolamine can be resynthesized by enzymatic reactions involving CMP and Phosphatidylethanolamine (PE) formed from the cytidine dinucleotide derivative or by the decarboxylation of phosphatidylserine (PS). Similarly, CDP-choline can be reformed by the reaction of CMP with PC synthesized from CDP-choline or by the sequential N-methylation of PE. A double-isotope experiment provides evidence that PE molecules synthesized via CDP-ethanolamine or by the decarboxylation of PS are converted to phosphatidylcholine (PC) by the methylation pathway at similar, if not identical, rates. The N-methylation of the metabolically specific pool of PE, synthesized from CDP-ethanolamine, is drastically reduced in membranes prepared from choline-grown cells. Neither EPT nor CPT appear to be induced by the addition of ethanolamine or choline, respectively, to the growth medium. However, the addition of 10 mm choline to the growth medium results in a 46% reduction in EPT activity. This change in EPT activity may be a regulatory response to lower rates of PE N-methylation in choline-grown cells.  相似文献   

11.
Selectivity of CDP-choline:diacylglycerol choline phosphotransferase and CDP-ethanolamine:diacylglycerol ethanolamine phosphotransferase for molecular species of diglyceride has been studied in rat brain microsomes in vitro. Diglyceride-labeled microsomes were prepared by incubation with labeled sn-glycerol-3-phosphate; the microsomes were then incubated with CDP-choline or CDP-ethanolamine for different time intervals. Experimental data extrapolated to zero-time incubation were taken into account for evaluating species specificity. A small selectivity for diglyceride species has been demonstrated for the choline phosphotransferase, but the ethanolamine phosphotransferase was found to convert hexaenoic diglyceride into phospholipid at the highest rate.  相似文献   

12.
Most of the phosphatidylethanolamine (PE) in mammalian cells is synthesized by two pathways, the CDP-ethanolamine pathway and the phosphatidylserine (PS) decarboxylation pathway, the final steps of which operate at spatially distinct sites, the endoplasmic reticulum and mitochondria, respectively. We investigated the importance of the mitochondrial pathway for PE synthesis in mice by generating mice lacking PS decarboxylase activity. Disruption of Pisd in mice resulted in lethality between days 8 and 10 of embryonic development. Electron microscopy of Pisd-/- embryos revealed large numbers of aberrantly shaped mitochondria. In addition, fluorescence confocal microscopy of Pisd-/- embryonic fibroblasts showed fragmented mitochondria. PS decarboxylase activity and mRNA levels in Pisd+/- tissues were approximately one-half of those in wild-type mice. However, heterozygous mice appeared normal, exhibited normal vitality, and the phospholipid composition of livers, testes, brains, and of mitochondria isolated from livers, was the same as in wild-type littermates. The amount and activity of a key enzyme of the CDP-ethanolamine pathway for PE synthesis, CTP:phosphoethanolamine cytidylyltransferase, were increased by 35-40 and 100%, respectively, in tissues of Pisd+/- mice, as judged by immunoblotting; PE synthesis from [3H]ethanolamine was correspondingly increased in hepatocytes. We conclude that the CDP-ethanolamine pathway in mice cannot substitute for a lack of PS decarboxylase during development. Moreover, elimination of PE production in mitochondria causes fragmented, misshapen mitochondria, an abnormality that likely contributes to the embryonic lethality.  相似文献   

13.
Neurite elongation involves the expansion of the plasma membrane and phospholipid synthesis. We investigated membrane phosphatidylethanolamine (PE) biosynthesis in PC12 cells during neurite outgrowth induced by nerve growth factor (NGF). When PE was prelabeled with [3H]ethanolamine and the radioactivity was chased by incubation with 1 mM unlabeled ethanolamine, the radioactivity of [3H]PE steadily declined and [3H]ethanolamine was released into the medium in NGF-treated cells during neurite outgrowth; in the absence of unlabeled ethanolamine, the radioactivity of [3H]PE remained relatively constant for at least 24 hr. In undifferentiated cells but not in NGF-treated cells, [3H]phosphoethanolamine accumulated in significant amounts during pulse labeling, and was converted partly to PE but largely released into the medium irrespective of incubation with unlabeled ethanolamine. The decline in the radioactivity of [3H]PE and release of [3H]ethanolamine following incubation with unlabeled ethanolamine were also observed in undifferentiated cells. Thus, the ethanolamine moiety of PE derived from ethanolamine is actively recycled in both differentiated and undifferentiated cells. When PE was derived from [3H]serine through phosphatidylserine (PS) decarboxylation, the decrease in radioactivity of [3H]PE and release of [3H]ethanolamine into the medium following incubation with unlabeled ethanolamine were observed only in NGF-treated cells, but not in undifferentiated cells, indicating that the ethanolamine moiety of PE derived from PS is actively recycled only in the cells undergoing NGF-induced neuritogenesis. Thus, in PC12 cells, the ethanolamine moiety of PE derived from PS is regulated differently from that of PE derived from ethanolamine.  相似文献   

14.
15.
Injection of choline-3H into choline-deficient rats resulted in an enhanced incorporation of the label into liver lecithin, as compared to the incorporation of label into liver lecithin of normal rats. The results obtained with the use of different lecithin precursors indicate that in the intact liver cell, both in vivo and in vitro, exchange of choline with phosphatidyl-choline is not significant. The synthesis and secretion of lecithins by the choline-deficient liver compare favorably with the liver of choline-supplemented rats, when both are presented with labeled choline or lysolecithin as lecithin precursors. Radioautography of the choline-deficient liver shows that 5 min after injection of choline-3H the newly synthesized lecithin is found in the endoplasmic reticulum (62%), mitochondria (13%), and at the "cell boundary" (20%). The ratio of the specific activity of microsomal and mitochondrial lecithin, labeled with choline, glycerol, or linoleate, was 1.53 at 5 min after injection, but the ratio of the specific activity of phosphatidyl ethanolamine (PE), labeled with ethanolamine, was 5.3. These results indicate that lecithin and PE are synthesized mainly in the endoplasmic reticulum, and are transferred into mitochondria at different rates. The site of a precursor pool of bile lecithin was studied in the intact rat and in the perfused liver. Following labeling with choline-3H, microsomal lecithin isolated from perfused liver had a specific activity lower than that of bile lecithin, but the specific activity of microsomal linoleyl lecithin was comparable to that of bile lecithin between 30 and 90 min of perfusion. It is proposed that the site of the bile lecithin pool is located in the endoplasmic reticulum and that the pool consists mostly of linoleyl lecithin.  相似文献   

16.
Diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) activities were investigated in microsomes from isolated rat fat cells. Assays based on the conversion of CDP-[14C]choline of CDP-[14C]ethanolamine to phosphatidylcholine or phosphatidylethanolamine utilized ethanol-dispersed diacylglycerols and 1 to 5 microng of protein. Cholinephosphotransferase and ethanolaminephosphotransferase activities had similar dependences on MgCl2 and pH, and were inhibited similarly by CaCl2, organic solvents, Triton X-100, Tween 20, and dithiothreitol. Ethylene glycol bis(beta-amino-ethyl ether)-N,N,N',N'-tetraacetic acid stimulated both activities similarly. With 1,2-dioleoyl-sn-glycerol, the cholinephosphotransferase activity had an apparent Km for CDP-choline of 23.9 micronM and a V max of 8.54 nmol/min/mg. CDP-ethanolamine and CDP were competitive inhibitors of the cholinephosphotransferase activity (apparent Kl values of 227 micronM and 360 micronM, respectively). With 1,2-dioleoyl-sn-glycerol, the ethanolaminephosphotransferase activity had an apparent Km of 18.3 micronM for CDP-ethanolamine and a V max of 1.14 nmol/min/mg. CDP-choline appeared to be a noncompetitive inhibitor of the ethanolaminephosphotransferase activity (apparent Kl of 1620 micronM). Inhibition of the ethanolaminephosphotransferase activity by CDP appeared to be of a mixed type. The dependences on diacylglycerols containing fatty acids 6 to 18 carbons in length were investigated...  相似文献   

17.
The incubation of neurons from chick embryos in primary culture with [3H]ethanolamine revealed the conversion of this base into monomethyl, dimethyl and choline derivatives, including the corresponding free bases. Labelling with [methyl-3H]monomethylethanolamine and [methyl-3H]dimethylethanolamine supported the conclusion that in chick neuron cultures, phosphoethanolamine appears to be the preferential substrate for methylation, rather than ethanolamine or phosphatidylethanolamine. The methylation of the latter two compounds, in particular that of phosphatidylethanolamine, was seemingly stopped at the level of their monomethyl derivatives. Fetal rat neurons in primary culture incubated with [3H]ethanolamine showed similar results to those observed with chick neurones. However, phosphoethanolamine and phosphatidylethanolamine and, to a lesser extent, free ethanolamine, appeared to be possible substrates for methylation reactions. The methylation of water-soluble ethanolamine compounds de novo was further confirmed by experiments performed in vivo by intraventricular injection of [3H]ethanolamine. Phosphocholine and the monomethyl and dimethyl derivatives of ethanolamine were detected in the brain 15 min after injection.  相似文献   

18.
To clarify the signal transduction mechanism of angiotensin II in renal glomeruli, we studied the effect of the hormone on phospholipid metabolism using isolated rat glomeruli. Stimulation of the glomeruli pulse-chase labeled with [3H]glycerol by angiotensin II caused a rapid (within 15 s) breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) with a concurrent production of 1,2-diacylglycerol. This effect of angiotensin II was in a dose-dependent manner within the range from 10(-12) M to 10(-6) M, and was inhibited by saralasin. Angiotensin II also decreased the 3H radioactivity of PIP slightly only at 15 s and increased that of phosphatidic acid after 15 s, with no significant effect upon the labelings of phosphatidylinositol (PI), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) within 1 min. The change in phospholipid metabolism by angiotensin II was similar when the glomeruli were labeled with [32P]orthophosphate: the decrease in the labeling of PIP2 and the increase in the labeling of phosphatidic acid after 15 s. In addition, 32P labeling of PI increased after 2 min. These results suggest that angiotensin II, after binding to glomerular receptors, induces initial PIP2 hydrolysis to diacylglycerol and subsequent resynthesis of PIP2 through phosphoinositide turnover.  相似文献   

19.
Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1. 82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The gene encoding ethanolamine kinase (EKI1) was identified from the Saccharomyces Genome Data Base (locus YDR147W) based on its homology to the Saccharomyces cerevisiae CKI1-encoded choline kinase, which also exhibits ethanolamine kinase activity. The EKI1 gene was isolated and used to construct eki1Delta and eki1Delta cki1Delta mutants. A multicopy plasmid containing the EKI1 gene directed the overexpression of ethanolamine kinase activity in wild-type, eki1Delta mutant, cki1Delta mutant, and eki1Delta cki1Delta double mutant cells. The heterologous expression of the S. cerevisiae EKI1 gene in Sf-9 insect cells resulted in a 165,500-fold overexpression of ethanolamine kinase activity relative to control insect cells. The EKI1 gene product also exhibited choline kinase activity. Biochemical analyses of the enzyme expressed in insect cells, in eki1Delta mutants, and in cki1Delta mutants indicated that ethanolamine was the preferred substrate. The eki1Delta mutant did not exhibit a growth phenotype. Biochemical analyses of eki1Delta, cki1Delta, and eki1Delta cki1Delta mutants showed that the EKI1 and CKI1 gene products encoded all of the ethanolamine kinase and choline kinase activities in S. cerevisiae. In vivo labeling experiments showed that the EKI1 and CKI1 gene products had overlapping functions with respect to phospholipid synthesis. Whereas the EKI1 gene product was primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway, the CKI1 gene product was primarily responsible for phosphatidylcholine synthesis via the CDP-choline pathway. Unlike cki1Delta mutants, eki1Delta mutants did not suppress the essential function of Sec14p.  相似文献   

20.
Since phospholipids are major components of all serum lipoproteins, the role of phospholipid biosynthesis in lipoprotein secretion from cultured rat hepatocytes has been investigated. In liver, phosphatidylcholine is made both by the CDP-choline pathway and by the methylation of phosphatidylethanolamine, which in turn is derived from both serine (via phosphatidylserine) and ethanolamine (via CDP-ethanolamine). Monolayer cultures of rat hepatocytes were incubated in the presence of [methyl-3H]choline, [1-3H] ethanolamine, or [3-3H]serine. The specific radioactivity of the phospholipids derived from each of these precursors was measured in the cells and in the secreted lipoproteins of the cultured medium. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine derived from [1-3H]ethanolamine were markedly lower (approximately one-half and less than one-tenth, respectively) in the secreted phospholipids than in the cellular phospholipids. Thus, ethanolamine was not an effective precursor of the phospholipids in lipoproteins. On the contrary, the specific radioactivity of phosphatidylcholine made from [methyl-3H]choline was approximately equal in cells and lipoproteins. In addition, over the first 4 h of incubation with [3-3H]serine, the specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were significantly higher in the lipoproteins than in the cells. These data indicate that there is not a random and homogeneous labeling of the phospholipid pools from the radioactive precursors. Instead, specific pools of phospholipids are selected, on the basis of their routes of biosynthesis, for secretion into lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号