首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Diglyceride kinase was purified from membranes of Escherichia coli K-12 using organic solvents. The enzyme apoprotein depended on lipids, such as cardiolipin (diphosphatidylglycerol), phosphatidylcholine or 1-monooleoylglycerol, for activity with 1,2-dipalmitoylglycerol. Mixed brain cerebrosides and gangliosides as well as defined ganglioside fractions and synthetic lactocerebroside were devoid of lipid cofactor activity. However, all these glycosphingolipids were strong inhibitors of activation by phosphatidylcholine. When cardiolipin was used as lipid activator with the detergent, Triton X-100, as solubilizing agent, the addition of mixed or purified gangliosides first (at about 0.4 mM) resulted in additional activation, but higher ganglioside concentrations were strongly inhibitory. Both effects were absolutely dependent on the presence of lipid-bound sialic acid and were not given by cerebrosides, by free sialic acid or by sialyl-lactose. The stimulating and inhibitory effects of glycosphingolipids could also be demonstrated when 1-monooleoylglycerol was used as substrate, lipid activator and solubilizing agent at the same time. The modulation of kinase activity by glycosphingolipids is discussed at the level of lipid/protein interactions.  相似文献   

2.
Diglyceride kinase was purified from membranes of Escherichia coli K-12 using organic solvents. The enzyme apoprotein depended on lipids, such as cardiolipin (diphosphatidylglycerol), phosphatidylcholine or 1-monooleoylglycerol, for activity with 1,2-dipalmitoylglycerol. Mixed brain cerebrosides and gangliosides as well as defined ganglioside fractions and synthetic lactocerebroside were devoid of lipid cofactor activity. However, all these glycosphingolipids were strong inhibitors of activation by phosphatidylcholine. When cardiolipin was used as lipid activator with the detergent, Triton X-100, as solubilizing agent, the addition of mixed or purified gangliosides first (at about 0.4 mM) resulted in additional activation, but higher ganglioside concentrations were strongly inhibitory. Both effects were absolutely dependent on the presence of lipid-bound sialic acid and were not given by cerebrosides, by free sialic acid or by sialyl-lactose. The stimulating and inhibitory effects of glycosphingolipids could also be demonstrated when 1-monooleoylglycerol was used as substrate, lipid activator and solubilizing agent at the same time. The modulation of kinase activity by glycosphingolipids is discussed at the level of lipid/protein interactions.  相似文献   

3.
To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22h in the presence ofd-[1-3H]galactose or [3H]GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipidsialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellular membrane fractions studied was recovered from plasma membrane and only 10–15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous [3H]GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid.  相似文献   

4.
The membranous structures of the pulmonary extracellular lining were removed from the lungs of rabbits by pulmonary lavage and isolated by differential centrifugation. This membranous fraction contained 93% of the total extracellular phospholipids present in lavage effluents and consisted of membranous vesicles, membrane fragments, tubular myelin and secreted lamellar bodies. The fraction was rich in phosphatidylcholine (79.4%) containing 85.2% palmitic acid in the 1-position and 57.4% palmitic acid in the 2-position. Phosphatidylglycerol was the next most abundant phospholipid, accounting for 9.4% of the total. E.p.r. spectra, obtained by using 5-doxylmethylstearate as a probe, showed that the extracellular phospholipids of the pulmonary lining were organized into structures which were much more fluid than erythrocyte-ghost membranes. The fluidity of phosphatidylcholine isolated from the membranous fraction was similar to that of the fraction itself, indicating that the minor phospholipids had very little influence on the fluidity of the major phospholipid. At physiological temperature, the fluidity of dipalmitoyl phosphatidylcholine was relatively low, but could be markedly increased by the presence of 1-palmitoyl-2-oleoyl phosphatidylcholine or phosphatidylglycerol (10%). Protein present in the extracellular phospholipid fraction did not affect the fluidity of the fraction. These studies indicate that the unsaturated phosphatidylcholines could play a major role in determining the fluidity of the important surface-tension-lowering phospholipids such as dipalmitoyl phosphatidylcholine.  相似文献   

5.
Total lipid extracts from washed trypsinized human platelets were fractionated into neutral lipids, glycosphingolipids, and phospholipids by silicic acid chromatography. The concentrations and chemical structures of the neutral and acidic glycosphingolipids were then studied in detail. On the basis of sugar molar ratios, studies of permethylation products, and the action of stereospecific glycosidases on the lipids, identifications were made of four neutral glycosphingolipids. Lactosylceramide was the most abundant type and accounted for 64% of the total neutral glycolipid mixture. The major fatty acids of the lactosylceramide were 20:0, 22:0, 24:0, and 24:1; the major long-chain base was 4-sphingenine. The platelets were surprisingly rich in a ceramide fraction, which represented 1.3% of the total platelet lipids. It had a different fatty acid composition than the neutral glycosphingolipid and ganglioside fractions. Hematoside was also isolated from the total lipid fraction of platelets; the neuraminic acid component was N-acetylneuraminic acid. Treatment of platelets with trypsin, chymotrypsin, or thrombin increased the yield of hematoside as compared with a control, while the level of ceramides was not changed. It was concluded that the platelets are similar to leukocytes, liver, and spleen in that lactosylceramide and hematoside are the principal neutral and acidic glycosphingolipids. The presence of a relatively high proportion of ceramide in platelets may be a unique characteristic of this cellular fraction of blood.  相似文献   

6.
Abstract: The lipid composition of neuronal somata and neuritic processes of cultured root ganglia has been determined. Neuronal soma contained 37% of dry weight as lipid (15.4% cholesterol, 4.8% galactolipid, and 57.1% phospholipid). The major phospholipids were phosphatidylcholine and phosphatidyl ethanolamine. Galactolipids consisted of cerebroside and sulfatide in molar ratio 2:1. The neuronal soma contained tetrasialo-, disialo-, and monosialoganglioside. In contrast, neurites contained 15% of the dry weight as lipid (22.1% cholesterol, 7.7% galactolipid with cerebroside and sulfatide in molar ratio 2:1, and 56.4% total phospholipid). The neuritic galactolipid content was higher, as was the percentage of sphingomyelin, and phosphatidyl serine. The higher cholesterol content in neuritic lipid reflected the higher percentage of plasma membrane in this compartment. The ganglioside pattern of neurites was distinct from that of the neuronal soma and consisted entirely of gangliosides GQ1b, GT1b, GD1b, GD1a, and GD3, with no monosialogangliosides. The results indicate a preferential phospholipid and glycolipid sorting to the neuritic plasma membrane that may be related to the distinctive functions of this neuronal compartment.  相似文献   

7.
The cell membrane of Mycoplasma mobile was isolated by either ultrasonic or French press treatment of intact cells. The membrane fraction contained all of the cellular lipids, but only one-third of cellular proteins and had a density of 1.14 g ml-1. The soluble fraction contained the NADH dehydrogenase activity of the cells, as well as a protein with an apparent molecular mass of 55 kDa that was phosphorylated in the presence of ATP. Lipid analyses of M. mobile membranes revealed that membrane lipid could be labelled by radioactive glycerol, oleate and to a much higher extent by palmitate but not by acetic acid. The membrane lipid fraction was composed of 54% neutral and 46% polar lipid. The major constituents of the neutral lipid fraction were free fatty acid, free cholesterol and cholesterol esters (45, 25 and 20%, respectively, of total neutral lipid fraction). The free cholesterol count was 13% (w/w) of total membrane lipids with a cholesterol:phospholipid molar ratio of about 0.9. Among the polar lipids, both phospho- and glycolipids were detected. The phospholipid fraction consisted of a major de novo-synthesized phosphatidylglycerol (approximately 63% of total phospholipids), plus exogenous phosphatidylcholine and sphingomyelin incorporated in an unchanged form from the growth medium. The glycolipid fraction was dominated by a single glycolipid (approximately 90% of total glycolipids) that was preferentially labelled by palmitic acid and showed a very high saturated:unsaturated fatty acids ratio.  相似文献   

8.
Thymic gangliosides GM3 and GD3 and LacCer incorporated into the membrane of the tumor target cell leukemia (YAC) increase its sensitivity to the membrane toxic action of spleen effectors. Unlike thymic gangliosides GD3, ganglioside GD3 of the brain origin substantially reduces tumor cell sensitivity to spleen effectors. Some other brain glycosphingolipids differing essentially in the structure of the carbohydrate part of the molecule exert the same action. It has been shown in model experiments with incorporation into the tumor cell membrane of brain ganglioside GD3 combined with thymic LacCer or with egg phosphatidylcholine that the increase in the sensitivity of the tumor cell membrane to spleen effectors is linked with a change in the properties of the lipid membrane matrix under the effect of unsaturated fatty acids (e.g. in experiments with phosphatidylcholine). It follows from the data presented that the capability of influencing the sensitivity of tumor cells to natural spleen effectors largely depends on the differences in the structure of the cearamide part of brain and thymic GD3.  相似文献   

9.
Recent studies have shown that, in mast cells, membrane microdomains rich in cholesterol and glycosphingolipids called lipid rafts play an important role in FcepsilonRI signaling. The present study demonstrates that, in RBL-2H3 cells following stimulation, the mast cell-specific gangliosides associated with FcepsilonRI are internalized from lipid rafts along with the receptor. When the cells are labeled with iodinated antibodies against the gangliosides or against FcepsilonRI and the cell components are then fractionated on Percoll density gradients, in stimulated cells the gangliosides are internalized with the same kinetics as FcepsilonRI and at 3 hr are present in the dense lysosome fraction. Using transmission electron microscopy, with antibody against the gangliosides conjugated to horseradish peroxidase and antibody against FcepsilonRI conjugated to colloidal gold, it was possible to demonstrate that the gangliosides and FcepsilonRI are internalized in the same coated vesicles. At 5 min, the gangliosides and FcepsilonRI can be identified in early endosomes and at 3 hr are found together in acid phosphatase-positive lysosomes. This study demonstrates that the mast cell-specific gangliosides are internalized from lipid rafts in the same vesicles and traffic intracellularly with the same kinetics as FcepsilonRI. This study contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.  相似文献   

10.
Two glycolipid transfer proteins that catalyze the transfer of gangliosides and neutral glycosphingolipids from phosphatidylcholine vesicles to erythrocyte ghosts have been isolated from calf brain. Purification procedures included differential centrifugation, precipitation at pH 5.1, ammonium sulfate precipitation, and gel filtration on Sephadex G-50 and G-75. The final stage employed fast protein liquid chromatography (Mono S), producing two peaks of activity. Apparent purity of the major peak (TP I) was approximately 85-90%, as judged by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis. That of the minor fraction (TP II) was less. The major band of both fractions had a molecular mass of approximately 20,000 daltons. Both proteins catalyzed the transfer of ganglioside GM1 as well as asialo-GM1, but transfer protein I was more effective with di- and trisialogangliosides. Transfer protein II appeared to be somewhat more specific for neutral glycolipids in that GA1 was transferred more rapidly than any of the gangliosides; however, lactosylceramide transfer was relatively slow. Neither protein catalyzed transfer of phosphatidylcholine.  相似文献   

11.
The transfer of labeled neutral glycosphingolipids from sonicated phosphatidylcholine vesicles to erythrocyte ghosts is greatly stimulated by a nonspecific lipid transfer protein purified from beef liver. Globo-tetraglycosylceramide is transferred at a rate 40% of that for dipalmitoylphosphatidylcholine. II3-alpha-N-Acetylneuraminosyl-gangliotetraglycosylceramide is also transferred by the transfer protein, either from sonicated phosphatidylcholine vesicles or from ganglioside micelles to erythrocyte ghosts. The nonspecific lipid transfer protein catalyzes the net transfer of glycosphingolipids from brush border membrane vesicles (from rabbit intestine) to sonicated phosphatidylcholine/cholesterol vesicles.  相似文献   

12.
We have studied the lipid composition of PC12 pheochromocytoma cells cultured in the presence and absence of nerve growth factor (NGF). Neutral and acidic lipid fractions were isolated by column chromatography on DEAE-Sephadex and analyzed by high-performance thin-layer chromatography (HPTLC). The total lipid concentration was approximately 220 micrograms/mg of protein, and the concentration of neutral glycolipids was 1.6-1.8 microgram/mg of protein for both NGF-treated and untreated cells. The neutral glycolipid fraction contained a major component, which accounted for approximately 80% of the total and which was characterized as globoside on the basis of HPTLC mobility, carbohydrate analysis, fast atom bombardment mass spectrometry, and mild acid hydrolysis. The major fatty acids of globoside were C16:0 (10%), C18:0 (16%), C22:0 (23%), C24:1 (17%), and C24:0 (24%). C18 sphingenine accounted for almost all of the long-chain bases. The other neutral glycolipids were tentatively identified as glucosylceramide (15%), lactosylceramide (4%), and globotriosylceramide (4.5%). The concentration of ganglioside sialic acid was approximately 0.34 and 0.18 microgram/mg of protein for cells grown in the presence and absence of NGF, respectively. Although there was an increase in ganglioside concentration in NGF-treated cells, NGF did not produce any differential effects on the relative proportions of the individual gangliosides. Several of the gangliosides appear to contain fucose, and one of these was tentatively identified as fucosyl-GM1. Brain-type gangliosides of the ganglio series were also detected by an HPTLC-immunostaining method. However, the fatty acid and long chain base compositions of PC12 cell gangliosides (and their TLC mobility) differ from those of brain gangliosides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Glycosphingolipids of human aorta   总被引:1,自引:0,他引:1  
The structures of the main gangliosides of human aorta (intima and media) were elucidated. The main component (67%) was identified as N-acetylneuraminosyl-lactosylceramide (ganglioside GM3). The aorta tissue contained also gangliosides GM1, GD3, GD1a, and GT1. All sialic acid residues in gangliosides were present as N-acetyl-neuraminosyl derivatives. Among neutral glycosphingolipids of human aorta, the main components were identified as glucosylceramide, lactosylceramide, globotriaosylceramide and globotetraosylceramide. The preliminary data suggest that the composition of the investigated glycosphingolipids in tissue might vary upon atherosclerosis lesions of aorta.  相似文献   

14.
Chronic chloroquine treatment of type-Göttingen miniature-pigs induced lipid accumulation in the liver, spleen, lungs and kidneys. The lipid analyses showed marked quantitative and qualitative differences between the organs. In the liver the lipids affected most were cholesteryl esters and glucosylceramides, which were increased at the most 20 times. Cholesterol and ganglioside concentrations were also increased, though less markedly. The concentration of acidic phospholipids was slightly increased but that of the neutral phospholipids was unaffected. There was a considerable inter-individual variation in the lipid changes. Spleen and lung showed significant increases of all the major lipids. Glucosylceramide was increased more than the other lipids, namely 6-fold in the spleen and 10-fold in the lung. The concentration of acidic phospholipids as well as that of gangliosides was increased by 50% in the spleen and by 100% in the lung. The organ affected least was the kidney, in which only the glycolipids, both acidic and neutral, were significantly increased. Common to all the organs of the chloroquine-treated pigs was the large increase of glucosylceramide, ganglioside CM2 and bis(monoacylglyceryl)phosphate. The ganglioside increase affected all the individual gangliosides and, except for the increased proportion of ganglioside GM2, there were not remarkable changes in the ganglioside pattern in any of the organs.  相似文献   

15.
The hydrolysis of di- and trisialo gangliosides by bacterial neuraminidases was investigated. Slow rates of hydrolysis were obtained with micellar dispersions of the pure gangliosides; the rates increased considerably with mixtures of ganglioside and phospholipids, such as phosphatidylcholine or sphingomyelin. The greatest rates of hydrolysis were obtained with mixtures containing 5-10 mol% ganglioside and 90-95% phospholipid. With the aid of the nonpenetrating reagent trinitrobenzenesulfonic acid, it was ascertained that this mixture consisted of sealed, unilamellar vesicles in which the ganglioside was distributed symmetrically between the two layers of the liposome. When the relative proportion of the ganglioside was increased, the dispersions contained liposomes admixed with micelles of ganglioside and phospholipid. The rates of hydrolysis of the ganglioside could be correlated with the percentage of sealed vesicles in each mixture. Experiments in which another ganglioside (GM1) or cholesterol was incorporated into the mixed dispersions further supported this conclusion. It is suggested that the rate of hydrolysis is affected predominantly by interactions between the carbohydrate chains of ganglioside molecules. The data emphasize that ganglioside metabolism can be best studied when the latter are part of biological or model membranes.  相似文献   

16.
The influence of different gangliosides (GM1, GD1a, GT1b) on the fluidity and surface dynamics of phosphatidylcholine small unilamellar vesicles was studied by electron paramagnetic resonance. 5-and 16-nitroxystearic acid, sounding respectively the region close to the surface and that close to the hydrophobic core of the vesicle, were employed as spin-label probes. The signals released by 5-nitroxystearic acid showed that the presence of gangliosides reduced the mobility of the hydrocarbon chains around the probe. The effect increased by increasing ganglioside concentration, and diminished from GM1 to GD1a and GT1b. The decrease of membrane fluidity was also monitored by the 16-nitroxystearic acid probe. On addition of Ca2+ the fluidity of ganglioside-containing vesicles (as signalled by the 5-nitroxystearic acid probe) promptly decreased, thereafter returning slowly to the original value. It is suggested that gangliosides cause strong side-side head group interactions on the bilayer surface -between ganglioside oligosaccharide chains and between ganglioside and phosphatidylcholine polar portions - which lead the lipid chains to assembly in a more rigid fashion. The influence of Ca2+ is interpreted as due to lateral phase separation in the vesicle membrane. This phenomenon can be related to the formation or stabilization of ganglioside clusters on the vesicle surface.  相似文献   

17.
Subcellular distribution and biosynthesis of rat liver gangliosides   总被引:6,自引:0,他引:6  
Gangliosides have generally been assumed to be localized primarily in the plasma membrane. Analysis of gangliosides from isolated subcellular membrane fractions of rat liver indicated that 76% of the total ganglioside sialic acid was present in the plasma membrane. Mitochondria and endoplasmic reticulum fractions, while containing only low levels of gangliosides on a protein basis, each contained approx. 10% of total ganglioside sialic acid. Gangliosides also were present in the Golgi apparatus and nuclear membrane fractions, and soluble gangliosides were in the supernatant. Individual gangliosides were non-homogeneously distributed and each membrane fraction was characterized by a unique ganglioside composition. Plasma membrane contained only 14 and 28% of the total GD1a and GD3, respectively, but 80-90% of the GM1, GD1b, GT1b and GQ1b. Endoplasmic reticulum, when corrected for plasma membrane contamination, contained only trace amounts of GM1, GD1b, GT1b and GQ1b, but 11 and 5% of the total GD1a and GD3, respectively. The ganglioside composition of highly purified endoplasmic reticulum was similar. Ganglioside biosynthetic enzymes were concentrated in the Golgi apparatus. However, low levels of these enzymes were present in the highly purified endoplasmic reticulum fractions. Pulse-chase experiments with [3H]galactose revealed that total gangliosides were labeled first in the Golgi apparatus, mitochondria and supernatant within 10 min. Labeled gangliosides were next observed at 30 min in the endoplasmic reticulum, plasma membrane and nuclear membrane fractions. Analysis of the individual gangliosides also revealed that GM3, GM1, GD1a and GD1b were labeled first in the Golgi apparatus at 10 min. These studies indicate that gangliosides synthesized in the Golgi apparatus may be transported not only to the plasma membrane, but to the endoplasmic reticulum and to other internal endomembranes as well.  相似文献   

18.
Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aβ(1–40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aβ(1–40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aβ(1–40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes.Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy.We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).  相似文献   

19.
The lipid composition of a plasma membrane enriched fraction isolated from corn (Zea mays) roots was examined. On a wt basis, the lipid: protein ratio was 1.11. Phospholipids comprised 60% of total lipids with the major phospholipids being phosphatidylcholine (62%) and phosphatidylethanolamine (21%). Free sterol was the major neutral lipid. The sterol:phospholipid molar ratio was 0.31. The fatty acid composition of the membrane was predominantly linoleic (60%) and palmitic (30%).  相似文献   

20.
Here we used electrospray ionization mass spectrometry for quantitative determination of lipid molecular species in human fibroblasts and their plasma membrane incorporated into enveloped viruses. Both influenza virus selecting ordered domains and vesicular stomatitis virus (VSV) depleted of such domains [Scheiffele, P., et al. (1999) J. Biol. Chem. 274, 2038-2044] were analyzed. The major difference between influenza and VSV was found to be a marked enrichment of glycosphingolipids in the former. The effect of chronic cholesterol loading on viral lipid composition was studied in Niemann-Pick type C (NPC) fibroblasts. Both NPC-derived influenza and VSV virions contained increased amounts of cholesterol. Furthermore, polyunsaturated phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine were enriched in NPC-derived virions at the expense of the monounsaturated ones. When normal fibroblasts were acutely loaded with cholesterol using cyclodextrin complexes, an adjustment toward increasingly unsaturated phospholipid species was observed, most clearly for phosphatidylcholine and sphingomyelin. Our results provide evidence that (1) glycosphingolipids are enriched in domains through which influenza virus buds, (2) chronic cholesterol accumulation increases the cholesterol content of both glycosphingolipid-enriched and intervening plasma membrane domains, and (3) an increase in membrane cholesterol content is accompanied by an increased level of polyunsaturated species of the major membrane phospholipids. We suggest that remodeling of phospholipids toward higher unsaturation may serve as both an acute and a long-term adaptive mechanism in human cellular membranes against cholesterol excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号