首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
Cadmium (Cd) is a nonessential heavy metal that can be harmful at low concentrations in organisms. Therefore, it is necessary to decrease Cd accumulation in the grains of wheats aimed for human consumption. In response to Cd, higher plants synthesize sulphur-rich peptides, phytochelatins (PCs). PC–heavy metal complexes have been reported to accumulate in the vacuole. Retention of Cd in the root cell vacuoles might influence the symplastic radial Cd transport to the xylem and further transport to the shoot, resulting in genotypic differences in grain Cd accumulation. We have studied PC accumulation in 12-day-old seedlings of two cultivars of spring bread wheat (Triticum aestivum), and two spring durum wheat cultivars (Triticum turgidum var. durum) with different degrees of Cd accumulation in the grains. Shoots and roots were analysed for dry weight, Cd and PC accumulation. There were no significant differences between the species or the varieties in the growth response to Cd, nor in the distributions of PC chain lengths or PC isoforms. At 1 μM external Cd, durum wheat had a higher total Cd uptake than bread wheat, however, the shoot-to-root Cd concentration ratio was higher in bread wheat. When comparing varieties within a species, the high grain Cd accumulators exhibited lower rates of root Cd accumulation, shoot Cd accumulation, and root PC accumulation, but higher shoot-to-root Cd concentration ratios. Intraspecific variation in grain Cd accumulation is apparently not only explained by differential Cd accumulation as such, but rather by a differential plant-internal Cd allocation pattern. However, the higher average grain Cd accumulation in the durum wheats, as compared to the bread wheats, is associated with a higher total Cd accumulation in the plant, rather than with differential plant-internal Cd allocation. The root-internal PC chain length distributions and PC–thiol-to-Cd molar ratios did not significantly differ between species or varieties, suggesting that differential grain Cd accumulation is not due to differential PC-based Cd sequestration in the roots.  相似文献   

2.
High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.  相似文献   

3.
Durum wheat (Triticum turgidum L. var durum) cultivars exhibit lower Zn efficiency than comparable bread wheat (Triticum aestivum L.) cultivars. To understand the physiological mechanism(s) that confers Zn efficiency, this study used 65Zn to investigate ionic Zn2+ root uptake, binding, and translocation to shoots in seedlings of bread and durum wheat cultivars. Time-dependent Zn2+ accumulation during 90 min was greater in roots of the bread wheat cultivar. Zn2+ cell wall binding was not different in the two cultivars. In each cultivar, concentration-dependent Zn2+ influx was characterized by a smooth, saturating curve, suggesting a carrier-mediated uptake system. At very low solution Zn2+ activities, Zn2+ uptake rates were higher in the bread wheat cultivar. As a result, the Michaelis constant for Zn2+ uptake was lower in the bread wheat cultivar (2.3 μm) than in the durum wheat cultivar (3.9 μm). Low temperature decreased the rate of Zn2+ influx, suggesting that metabolism plays a role in Zn2+ uptake. Ca inhibited Zn2+ uptake equally in both cultivars. Translocation of Zn to shoots was greater in the bread wheat cultivar, reflecting the higher root uptake rates. The study suggests that lower root Zn2+ uptake rates may contribute to reduced Zn efficiency in durum wheat varieties under Zn-limiting conditions.Soils that contain insufficient levels of the essential plant micronutrient Zn are common throughout the world. As a result, Zn deficiency is a widespread problem in crop plants, especially cereals (Graham et al., 1992). The importance of plant foods as sources of Zn, particularly in the marginal diets of developing countries, is well established (Welch, 1993). The development of crop plants that are efficient Zn accumulators is therefore a potentially important endeavor. In addition to its effects on nutrition, Zn deficiency in crops is relevant to other areas of human health. Another consequence of Zn-deficient soils is the tendency for plants grown in such soils to accumulate heavy metals. For example, in the Great Plains region of North America, where soil Zn levels are low and naturally occurring Cd is present, durum wheat (Triticum turgidum L. var durum) grains accumulate Cd to relatively high concentrations (Wolnik et al., 1983). The presence of Cd in food represents a potential human health hazard and, in response, international trade standards have been proposed to limit the levels of Cd in exported grain (Codex Alimentarius Commission, 1993). Thus, there is a need to understand the physiological processes that control acquisition of Zn from soil solution by roots and mobilization of Zn within plants.It has been demonstrated in recent years that crop plants vary in their ability to take up Zn, particularly when its availability to roots is limited. Zn efficiency, defined as the ability of a plant to grow and yield well in Zn-deficient soils, varies among wheat cultivars (Graham and Rengel, 1993). In field trials, durum wheat cultivars have been shown to be consistently less Zn efficient than bread wheat (Triticum aestivum L.) cultivars (Graham et al., 1992). Similarly, durum wheat varieties were reported to be less Zn efficient than bread wheat varieties when grown in chelate-buffered hydroponic nutrient culture (Rengel and Graham, 1995a).The physiological mechanism(s) that confers Zn efficiency has not been identified. Processes that could influence the ability of a plant to tolerate limited amounts of available Zn include higher root uptake, more efficient utilization of Zn, and enhanced Zn translocation within the plant. Cakmak et al. (1994) showed that a Zn-inefficient durum wheat cultivar exhibited Zn-deficiency symptoms earlier and more intensely than a Zn-efficient bread wheat cultivar even though the Zn tissue concentrations were similar in both lines, suggesting differential utilization of Zn in the two cultivars. Rates of Zn translocation to shoots were shown to vary among sorghum cultivars, although correlations with Zn efficiency were not established (Ramani and Kannan, 1985). Root uptake kinetics have been reported to vary between rice cultivars having different Zn requirements, with high-Zn-requiring cultivars exhibiting consistently higher root uptake rates (Bowen, 1986). In contrast, a correlation between Zn efficiency and rates of root Zn uptake in bread and durum wheat cultivars could not be demonstrated (Rengel and Graham, 1995b).In grasses Zn influx into the root symplasm has been hypothesized to occur as the free Zn2+ ion (Halvorson and Lindsay, 1977), as well as in the form of Zn complexes with nonprotein amino acids known as phytosiderophores (Tagaki et al., 1984) or phytometallophores (Welch, 1993). Concentration-dependent uptake of free Zn2+ ions has been shown to be saturable in several species, including maize (Mullins and Sommers, 1986), barley (Veltrup, 1978), and wheat (Chaudhry and Loneragan, 1972), suggesting that ionic uptake in grasses occurs via a carrier-mediated system. However, several of these studies have been criticized on the basis that excessively high (and physiologically unrealistic) Zn2+ concentrations were used (Kochian, 1993).This study was undertaken to examine unidirectional Zn2+ influx and translocation to shoots in Zn-efficient bread wheat lines and Zn-inefficient durum wheat lines. Experiments were performed in the absence of added phytometallophores and results are presumed to represent influx of ionic Zn2+. Zn activities in the nanomolar range were used to more closely mimic free Zn2+ levels occurring naturally in soil solution. The results presented here indicate that a Zn-efficient bread wheat cultivar maintained higher rates of Zn uptake than a Zn-inefficient durum wheat cultivar, particularly at low (and physiologically relevant) solution Zn2+ activities.  相似文献   

4.
Accumulation of cadmium (Cd) in crop plants is of great concern due to the potential for food chain contamination through the soil-root interface. Although Cd uptake varies considerably with plant species, the processes which determine the accumulation of Cd in plant tissues are affected by soil factors. The influence of soil type on Cd uptake by durum wheat (Triticum turgidum var. durum L.) and flax (Linum usitatissimum L.) was studied in a pot experiment under environmentally controlled growth chamber conditions. Four cultivars/lines of durum wheat (Kyle, Sceptre, DT 627, and DT 637) and three cultivars/lines of flax (Flanders, AC Emerson, and YSED 2) were grown in two Saskatchewan soils: an Orthic Gray Luvisol (low background Cd concentration; total/ABDTPA extractable Cd: 0.12/0.03 mg kg-1, respectively) and a Dark Brown Chernozem (relatively high background Cd concentration; total/ABDTPA Cd: 0.34/0.17 mg kg-1 respectively). Plant roots, stems, newly developed heads, and grain/seeds were analyzed for Cd concentration at three stages of plant growth: two and seven weeks after germination, and at plant maturity. The results showed that Cd bioaccumulation and distribution within the plants were strongly affected by both soil type and plant cultivar/line. The Cd concentration in roots leaves and stems varied at different stages of plant growth. However, all cultivars of both plant species grown in the Chernozemic soil accumulated more Cd in grain/seeds than plants grown in the Orthic Gray Luvisol soil. The different Cd accumulation pattern also corresponded to the levels of ABDTPA extractable and metal-organic complex bound soil Cd found in both soils. Large differences were found in grain Cd among the durum wheat cultivars grown in the same soil type, suggesting the importance of rhizosphere processes in Cd bioaccumulation and/or Cd transport processes within the plant. Distribution of Cd in parts of mature plants showed that durum grain contained up to 21 and 36% of the total amount of Cd taken up by the plants for the Orthic Gray Luvisol and Chernozemic soils, respectively. These results indicate the importance of studying Cd speciation, bioaccumulation and cycling in the environment for the management of agricultural soils and crops.  相似文献   

5.
Uptake and retranslocation of leaf-applied radiolabeled cadmium (109Cd) was studied in three diploid (Triticum monococcum, AA), four tetraploid (Triticum turgidum, BBAA) and two hexaploid (Triticum aestivum, BBAADD) wheat genotypes grown for 9 d under controlled environmental conditions in nutrient solution. Among the tetraploid wheats, two genotypes were primitive (ssp. dicoccum) and two genotypes modern wheats (ssp. durum). Radiolabelled Cd was applied by immersing the tips (3 cm) of mature leaf into a 109Cd radiolabelled solution. There was a substantial variation in the uptake and export of 109Cd among and within wheat species. On average, diploid wheats (AA) absorbed and translocated more 109Cd than other wheats. The largest variation in 109Cd uptake was found within tetraploid wheats (BBAA). Primitive tetraploid wheats (ssp. dicoccum) had a greater uptake capacity for 109Cd than modern tetraploid wheats (ssp. durum). In all wheats studied, the amount of the 109Cd exported from the treated leaf into the roots and the remainder of the shoots was poorly related to the total absorption. For example, bread wheat cultivars were more or less similar in total absorption, but differed greatly in the amount of 109Cd retranslocated. The diploid wheat genotype 'FAL-43' absorbed the lowest amount of 109Cd, but retranslocated the greatest amount of 109Cd in roots and remainder of shoots. The results indicate the existence of substantial genotypic variation in the uptake and retranslocation of leaf-applied 109Cd. This variation is discussed in terms of potential genotypic differences in binding of Cd to cell walls and the composition of phloem sap ligands possibly affecting Cd transport into sink organs.  相似文献   

6.
This study investigated the effect of exogenous amino acids on apoplastic and symplastic uptake and root to shoot translocation of nickel (Ni) in two wheat cultivars. Seedlings of a bread (Triticum aestivum cv. Back Cross) and a durum wheat cultivar (T. durum cv. Durum) were grown in a modified Johnson nutrient solution and exposed to two levels (50 and 100 μM) of histidine, glycine, and glutamine. Application of amino acids resulted in increasing symplastic to apoplastic Ni ratio in roots of both wheat cultivars, although glutamine and glycine were more effective than histidine under our experimental conditions. The amino acid used in the present study generally increased the relative transport of Ni from the roots to shoots in both wheat cultivars. Higher amounts of Ni were translocated to wheat shoots in the presence of histidine than the other amino acids studied, which indicated that histidine was more effective in translocation of Ni from roots to shoots. Amino acids used in the present study largely increased root symplastic Ni, but shoot Ni accumulation was much lower than the total Ni accumulation in roots, indicating a large proportion of Ni was retained or immobilized in wheat roots (either in the apoplastic or symplastic space), with only a very small fraction of Ni being translocated from the root to the shoot. According to the results, glutamine and glycine were more effective than histidine in enhancing the symplastic to apoplastic Ni ratio in the roots, while more Ni was translocated from the roots to the shoots in the presence of histidine.  相似文献   

7.
Here we examined several physiological properties of two near-isogenic lines of durum wheat (Triticum turgidum var. durum) that differ in grain cadmium accumulation, to identify the function of a gene locus that confers differential grain Cd concentrations. Time- and concentration-dependent uptake and translocation studies using 109Cd were conducted on nutrient solution-grown seedlings. Root extracts were analysed by inductively coupled plasma emission spectrometry, gel filtration and capillary electrophoresis to determine the interaction between Cd and phytochelatins (PCs) in storage of Cd in roots. The two isolines did not differ in time- or concentration-dependent root Cd uptake, but the low grain-Cd-accumulating isoline showed decreased movement of Cd from roots to shoots. All buffer-soluble Cd extracted from roots of both isolines was in the form of a low-molecular-weight PC-containing complex. The data suggest that PC synthesis is not a limiting factor in the differential storage of Cd in roots, and that movement of Cd through the root and into the transpiration stream may be the cause of differential Cd partitioning in the two isolines.  相似文献   

8.
Cadmium is readily taken up from soils by plants, depending on soil chemistry, and variably among species and cultivars; altered transpiration and xylem transport and/or translocation in the phloem could cause this variation in Cd accumulation, some degree of which is heritable. Using Triticum turgidum var. durum cvs Kyle and Arcola (high and low grain Cd accumulating, respectively), the objectives of this study were to determine if low-concentration Cd exposure alters transpiration, to relate transpiration to accumulation of Cd in roots and shoots at several life stages, and to evaluate the role of apoplastic bypass in the accumulation of Cd in shoots. The low abundance isotope (106)Cd was used to probe Cd translocation in plants which had been exposed to elemental Cd or were Cd-na?ve; apoplastic bypass was monitored using the fluorescent dye PTS (8-hydroxy-1,3,6-pyrenetrisulphonate). Differential accumulation of Cd by 'Kyle' and 'Arcola' could be partially attributed to the effect of Cd on transpiration, as exposure to low concentrations of Cd increased mass flow and concomitant Cd accumulation in 'Kyle'. Distinct from this, exposure of 'Arcola' to low concentrations of Cd reduced translocation of Cd from roots to shoots relative to root accumulation of Cd. It is possible, but not tested here, that sequestration mechanisms (such as phytochelatin production, as demonstrated by others) are the genetically controlled difference between these two cultivars that results in differential Cd accumulation. These results also suggest that apoplastic bypass was not a major pathway of Cd transport from the root to the shoot in these plants, and that most of the shoot Cd resulted from uptake into the stele of the root via the symplastic pathway.  相似文献   

9.
Welch  R.M.  Hart  J.J.  Norvell  W.A.  Sullivan  L.A.  Kochian  L.V. 《Plant and Soil》1999,208(2):243-250
Cd accumulation in durum wheat presents a potential health risk to consumers. In an effort to understand the physiological mechanisms involved with Cd accumulation, this study examined the effects of Zn on Cd root uptake and phloem translocation in a split– root system. Durum wheat seedlings were grown in chelate-buffered nutrient solution with intact root systems divided into two sections. Each root section grew in a separate 1 l pot, one of which contained 0.2 μM CdSO4. In addition, each two-pot system contained ZnSO4 in the following combinations (in μm) (for -cd root system: +cd root system): 1:1, 1:10, 10:1,10:10, 1:19, and 19:1. Harvested plant material was analyzed for Cd and Zn. In addition, rates of Cd and Zn net uptake, translocation to the shoot, and root export (translocation from one root segment to the other) between days 8 and 22 were calculated. Results show that Zn was not translocated from one root section to its connected root section. Uptake rates of Cd increased as solution Zn concentrations increased. Cd translocation from one root section to the other decreased significantly when the Zn concentration in either pot was greater than 1 μM. These results show the potential of Zn to inhibit movement of Cd via the phloem, and suggests that providing adequate Zn levels may limit phloem loading of Cd into wheat grain. Increasing the rhizosphere activity of Zn2+ in Cd-containing soils may therefore result in reduced Cd accumulation in grain even while net Cd uptake is slightly enhanced. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Cadmium (Cd) accumulation in edible crops is undesirable due to its hazardous influences on human health. The objectives of this study were: i) to evaluate the spatial variability of grain Cd and its relationships with soil properties in 4000 km2 wheat farms; ii) to evaluate the effect of wheat cultivar on the soil properties vs. grain Cd relationships. A number of 255 soil (0–20 cm) and grain samples were taken and Cd concentrations in grain samples and some soil properties were measured. Grain Cd concentrations in 95 percent of the samples exceeded the threshold of 0.2 mg kg?1. Durum wheat had more potential to accumulate Cd in grain (0.76 mg kg?1) than bread (0.69 mg kg?1). There was significant (p < 0.01) correlation between grain Cd and organic carbon (r = 0.66), CEC (r = 0.77) and DTPA-extractable Cd (p < 0.05) (r = 0.57) of the soils. Greater Pearson coefficient values for durum wheat showed that, in the studied calcareous soils, organic carbon, CEC, Cd-DTPA had more effects on durum wheat than bread wheat cultivar. The obtained Kriging map of grain Cd identified three hotspots at the east (durum wheat cultivation), the west (intensive irrigated wheat farms), and south (wheat farms around petrochemical industries) of the region. Agricultural mismanagement due to overusing P-fertilizers increased Cd concentration in the topsoils and grains of wheat farms in the study area.  相似文献   

11.
Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.  相似文献   

12.
Durum wheat (Triticum turgidum L. var. durum) accumulates Cd from the soil depending on various factors. When grown in hydroponic solution containing Cd (20 microg l(-1)), roots had higher tissue Cd concentrations than shoots or heads. Kyle (the higher grain-Cd accumulating cultivar) had lower root-Cd, and greater shoot-Cd and head-Cd concentrations than Arcola (the lower grain-Cd accumulating cultivar). These cultivar differences were greater at flowering and ripening than at tillering. Much of the root-Cd was lost between the flowering and ripening stages of development. Distribution of (106)Cd among plant parts, after a single 24 h feeding, demonstrated that root-to-shoot transfer of Cd in Arcola was similar to that of Kyle at tillering, but it had ceased at flowering in Arcola but not Kyle. None of the Cd in wheat heads at ripening originated from (106)Cd exposure in the previous 24 h, suggesting that grain-Cd is a function of total shoot accumulation. Both cultivars demonstrated basipetal translocation of Cd; Arcola at tillering translocated more Cd from shoots to roots than Kyle. The proportion of Cd(2+)/Cd(total) in the nutrient solution decreased with time, suggesting that plant activity altered the solution chemistry. The alteration probably resulted from either preferential depletion of solution Cd(2+) and/or addition of root exudates. Lower grain-Cd accumulation in Arcola possibly resulted from a combination of reduced root-to-shoot transfer of Cd at flowering, as well as enhanced shoot-to-root retranslocation of Cd, at least in younger plants. Plant-mediated changes in solution-Cd speciation did not play a role.  相似文献   

13.
Knight  B.  Zhao  F.J.  McGrath  S.P.  Shen  Z.G. 《Plant and Soil》1997,197(1):71-78
The hyperaccumulator Thlaspi caerulescens J & C Presl. was grown in seven different soils collected from around Europe that had been contaminated with heavy metals by industrial activity or the disposal of sewage sludge to land. Zinc accumulation factors (shoot concentration/initial soil solution concentration) ranged from 3500–85 000 with a mean value of around 36 000. This compares with mean accumulation factors of 636, 66 and 122 for Cd, Ca and Mg, respectively. The concentration of Zn in the shoots was much greater than in the roots. The total removal of Zn and Cd ranged from 8 to 30 and from 0.02 to 0.5 mg kg-1 soil, respectively. The Zn concentration in shoots of T. caerulescens correlated, using a curvilinear relationship, with the initial Zn concentration in soil solution (R2 = total Zn 0.78; Zn2+ 0.80). There was no relationship between the uptake of Zn and the total Zn concentration in the soil. In most soils, solution pH increased only slightly after growth of T. caerulescens, indicating that acidification was not the mechanism used to mobilise Zn in the soil. Dissolved organic carbon concentrations generally increased but characterisation of the component organic compounds was not attempted. The concentrations of Zn and Cd in soil solution decreased considerably after growth of T. caerulescens. The percentages of Zn and Cd in soil solution present as free ions also decreased. However, the decrease of Zn in soil solution after growth accounted for only about 1% of the total Zn uptake by T. caerulescens. This was much lower than for Cd, Ca and Mg. The results suggest that either T. caerulescens was highly efficient at mobilising Zn which was not soluble initially, or the soils used had large buffering capacities to replenish soil solution Zn within a short time. This work highlights the need to investigate the role of root exudates on the mobilisation of Zn and Cd in soils by the hyperaccumulator T. caerulescens.  相似文献   

14.
Excessive cadmium (Cd) accumulation in rice poses a risk to food safety. OsHMA3 plays an important role in restricting Cd translocation from roots to shoots. A non‐functional allele of OsHMA3 has been reported in some Indica rice cultivars with high Cd accumulation, but it is not known if OsHMA3 allelic variation is associated with Cd accumulation in Japonica cultivars. In this study, we identified a Japonica cultivar with consistently high Cd accumulation in shoots and grain in both field and greenhouse experiments. The cultivar possesses an OsHMA3 allele with a predicted amino acid mutation at the 380th position from Ser to Arg. The haplotype had no Cd transport activity when the gene was expressed in yeast, and the allele did not complement a known nonfunctional allele of OsHMA3 in F1 test. The allele is present only in temperate Japonica cultivars among diversity panels of 1483 rice cultivars. Different cultivars possessing this allele showed greatly increased root‐to‐shoot Cd translocation and a shift in root Cd speciation from Cd―S to Cd―O bonding determined by synchrotron X‐ray absorption spectroscopy. Our study has identified a new loss‐of‐function allele of OsHMA3 in Japonica rice cultivars leading to high Cd accumulation in shoots and grain.  相似文献   

15.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

16.
Erenoglu  B.  Cakmak  I.  Römheld  V.  Derici  R.  Rengel  Z. 《Plant and Soil》1999,209(2):245-252
Effect of zinc (Zn) nutritional status on uptake of inorganic 65Zn was studied in rye (Secale cereale, cv. Aslim), three bread wheat (Triticum aestivum, cvs. Dagdas, Bezostaja, BDME-10) and durum wheat (Triticum durum, cv. Kunduru-1149) cultivars grown for 13 days in nutrient solution under controlled environmental conditions. The cultivars were selected based on their response to Zn deficiency and to Zn fertilization in calcareous soils under field conditions. When grown in Zn-deficient calcareous soil in the field, the rye cultivar had the highest, and the durum wheat the lowest Zn efficiency. Among the bread wheats, BDME-10 showed higher susceptibility to Zn deficiency and Bezostaja and Dagdas were less affected by Zn deficiency. Similarly to field conditions, in nutrient solution visual Zn deficiency symptoms (i.e. necrotic lesions on leaf blade) appeared to be more severe in Kunduru-1149 and BDME-10 and less severe in rye cultivar Aslim. Under Zn deficiency, shoot concentrations of Zn were similar between all cultivars. Cultivars with adequate Zn supply did not differ in uptake and root-to-shoot translocation rate of 65Zn, but under Zn deficiency there were distinct differences; rye showed the highest rate of Zn uptake and the durum wheat the lowest. In the case of bread wheat cultivars, 65Zn uptake rate was about the same and not related to their differential Zn efficiency. Under Zn deficiency, rye had the highest rate of root-to-shoot translocation of 65Zn, while all bread and durum wheat cultivars were similar in their capacity to translocate 65Zn from roots to shoots. When Zn2+ activity in uptake solution ranged between 117 p M and 34550 pM, Zn-efficient and Zn-inefficient bread wheat genotypes were again similar in uptake and root-to-shoot translocation rate of 65Zn. The results indicate that high Zn efficiency of rye can be attributed to its greater Zn uptake capacity from soils. The inability of the durum wheat cultivar Kunduru-1149 to have a high Zn uptake capacity seems to be an important reason for its Zn inefficiency. Differential Zn efficiency between the bread wheat cultivars used in this study is not related to their capacity to take up inorganic Zn. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Enhanced cadmium accumulation in maize roots—the impact of organic acids   总被引:4,自引:0,他引:4  
Low molecular weight organic acids are important components of root exudates and therefore, knowledge regarding the mechanisms of cadmium (Cd) uptake and distribution within plants under the influence of organic acids, is necessary for a better understanding of Cd behavior in the plant–soil system. In this study, acetic and malic acids increased the uptake of Cd by maize (Zea mays L. cv. TY2) roots and enhanced Cd accumulation in shoots under hydroponic conditions. Concentration-dependent net Cd influx in the presence and absence of organic acids could be resolved into linear and saturable components. The saturable component followed Michaelis–Menten kinetics, which indicated that Cd uptake across the plasma membrane was transporter-mediated. While the K m values were similar, the V max values in the presence of acetic and malic acids were respectively 6.0 and 3.0 times that of the control. Zinc transporters were the most probable pathways for Cd accumulation. It was hypothesized that Cd(II)–organic acid complexes associated with the root zone, could decompose and liberate Cd2+ for subsequent absorption by maize roots; and that in the layer of the roots or within the root free space, depletion of Cd2+ was buffered by the presence of Cd(II)–organic acid complexes. Plant response to elevated Cd levels involved overproduction of organic acids in maize roots as a resistance mechanism to alleviate Cd toxicity.  相似文献   

18.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

19.
McLaughlin  M.J.  Bell  M.J.  Wright  G.C.  Cozens  G.D. 《Plant and Soil》2000,222(1-2):51-58
Cadmium has been found to accumulate in peanut (Arachis hypogaea) kernels to levels exceeding the current maximum permitted concentration in Australia of 0.1 mg kg-1. Little is known of the mechanisms of Cd uptake into kernels by cultivars of peanut, so the aims of the experiments reported here were to determine if Cd is absorbed directly through the pod wall or via the main root system, and if differences exist between cultivars in this respect. Split-pot soil and sand/nutrient solution experiments were performed with two cultivars of peanut (cv. NC7 and Streeton) known to accumulate Cd to different levels in the kernel. The growth medium was separated into pod and root zones with Cd concentrations in each zone varied. In confirmation of previous field trial results, cv. NC7 had higher concentrations of Cd in kernels, given the same Cd levels in the external medium (solution or soil). Despite total Cd uptake by cv. NC7 being similar to cv. Streeton, cv. NC7 appeared to retain more Cd in the roots and translocate less Cd to shoots. Results from both soil and sand/solution culture indicated that the dominant path of Cd uptake by peanut was via the main root system, with direct pod uptake contributing less than 5% of the total Cd in the kernel. There was little difference between cultivars in this characteristic. This indicates that unlike Ca nutrition of peanuts, agronomic techniques to manage Cd uptake will require modification of soil to the full depth of root exploration, rather than just the surface strata where pods develop. Cadmium concentrations in testa were up to an order of magnitude higher than in the kernel, indicating that blanching of kernels would be effective in reducing Cd in the marketed product. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
采用人工控制光温条件的蛭石-营养液相结合的培养方法,对根分泌物活化难溶性硫化镉以及对水稻吸收、运输镉的影响进行了研究。结果表明,缺铁水稻根分泌物和缺铁小麦根分泌匀能活化水稻根际的难溶性镉(CdS),促进了水稻对这部分镉的吸收和运输;但二者的活化强度不同,缺铁小麦根分泌物对镉的活化作用较缺铁水稻根分泌物强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号