首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Global temperatures and atmospheric CO2 concentrations are expected to both increase, but their combined effect on plant communities has been far less investigated than the single factors of global change. Moreover, drought events are expected to become more frequent and intense in the near future what might alter plant responses to the changing climate.In this study synthesised grassland communities in a current or future climate were subjected to several drought levels (0, 15, 22 and 35 days of drought). The grassland communities were grown in six sunlit, climate-controlled chambers. Three of the chambers were exposed to ambient temperature and CO2 (current climate), while the other three were continuously warmed 3 °C above ambient temperature at 620 ppm of CO2 (future climate).The aim of this study was to investigate the effect of drought on the response of grassland communities to a future climate. Therefore, the response to future climate was observed (1) in the absence of drought and (2) in the occurrence of an extreme drought event, both early and late in the growing season.
  • (1)In the absence of drought, plant productivity was positively affected by future climate early in the growing season. Later in the growing season this effect tended to turn negative, resulting in a disappearance of the overall effect of climate at the end of the growing season.
  • (2)During drought there was a stronger decrease in net CO2 assimilation rate (Asat) in future than in current climate due to stronger stomatal closure. Consistently, the beneficial biomass response to future climate stagnated during drought. At the end of the season, after a period of recovery, there was no effect of climate on plant productivity. As in the absence of drought, plant productivity was not affected by climate at the end of the growing season. Hence, the occurrence of an extreme drought event during the growing season did not alter the overall response of plant productivity to a future climate.
  相似文献   

2.
Vitamin D is a secosteroid best known for its role in maintaining bone and muscle health. Adequate levels of vitamin D may also be beneficial in maintaining DNA integrity. This role of vitamin D can be divided into a primary function that prevents damage from DNA and a secondary function that regulates the growth rate of cells. The potential for vitamin D to reduce oxidative damage to DNA in a human has been suggested by clinical trial where vitamin D supplementation reduced 8-hydroxy-2'-deoxyguanosine, a marker of oxidative damage, in colorectal epithelial crypt cells. Studies in animal models and in different cell types have also shown marked reduction in oxidative stress damage and chromosomal aberrations, prevention of telomere shortening and inhibition of telomerase activity following treatment with vitamin D. The secondary function of vitamin D in preventing DNA damage includes regulation of the poly-ADP-ribose polymerase activity in the DNA damage response pathway involved in the detection of DNA lesions. It is also able to regulate the cell cycle to prevent the propagation of damaged DNA, and to regulate apoptosis to promote cell death. Vitamin D may contribute to prevention of human colorectal cancer, though there is little evidence to suggest that prevention of DNA damage mediates this effect, if real. Very limited human data mean that the intake of vitamin D required to minimise DNA damage remains uncertain.  相似文献   

3.
4.
Does species diversity limit productivity in natural grassland communities?   总被引:2,自引:0,他引:2  
Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity–productivity relationships. In this study, we evaluated diversity–productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity–productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity.  相似文献   

5.
L Zimmer  D Woolley  L Chang 《Life sciences》1985,36(9):851-858
Because of the similarity in the pattern of limbic sites damaged by both compounds, it has been suggested that trimethyltin (TMT) may be an excitotoxin like kainic acid (KA). KA produces seizures which eventually result in neuronal damage similar to that found in epilepsy. Anticonvulsants reduce both the seizures and pathology associated with KA. Because TMT may also produce seizures, we undertook to determine whether or not some of the TMT-induced limbic neuropathology could result from seizure activity. To do this, a single dose of TMT chloride (either 7.5 or 15 mg/kg) was given per os to rats, and then phenobarbital (30 mg/kg) was administered subcutaneously in repeated doses. Treatment with phenobarbital did not prevent pathologic changes in the hippocampus, dentate gyrus, and pyriform or prepyriform cortex. Since phenobarbital did not protect against TMT-induced neuronal damage, as it has been reported by others to protect against KA-induced damage, the present findings suggest that these two toxicants probably produce hippocampal pathology via different mechanisms and that the TMT-induced pathologic changes do not require sustained electrical seizure activity.  相似文献   

6.

Background and aims

Plant litter quality and water availability both control decomposition. The interaction of both parameters was never studied. We used a grassland site, where litter of contrasting quality, i.e. green litter (fresh leaves; high quality) and brown litter (dead leaves, which underwent senescence but which are still attached to the plant; low quality), is returned to soil. Green and brown litter were exposed in the field under regular weather and drought conditions. The objective of this study was to evaluate the effect of drought on the decomposition of both litter types.

Methods

We incubated green and brown litter of three different grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) alone or as litter mixture (1/3 of each of the three grassland species) in litterbags for 28?weeks. Drought conditions were simulated by rainfall exclusion. After incubation, litter residues were analysed for C and nitrogen (N) content and stable isotope composition. Additionally, we determined the response of the lignin and carbohydrate signatures to the contrasting conditions.

Results

C decomposition kinetics of green and brown litter under drought conditions could be explained by two pools of contrasting turnover times. Drought decreased leaf litter C and N decomposition by more than 50% compared to regular weather conditions, mainly by strongly decreasing the decomposition rate constants. The lowest C decomposition occurred for mixtures of litter from all three grassland species. Brown litter showed on average 15% higher reduction in carbon decomposition than green litter following drought. Lignin content remained similar for green and brown litter after drought and regular weather conditions, while sugar content remained similar in green litter and decreased by 18% for brown litter under drought conditions.

Conclusions

Our results showed different response of decomposition of litter with contrasting quality to drought. Low quality brown litter is likely to be more affected than high quality green litter. Thus, litter quality must be taken into account, when assessing the effect of drought on decomposition.  相似文献   

7.
Trees are exceptional organisms that have evolved over some 385 million years and have overtaken other plants in order to harvest light first. However, this advantage comes with a cost: trees must transport water all the way up to their crowns and inherent physical limitations make them vulnerable to water deficits. Because climate change scenarios predict more frequent extreme drought events, trees will increasingly need to cope with water stress. Recent occurrences of climate change‐type droughts have had severe impacts on several forest ecosystems. Initial experimental studies have been undertaken and show that stomatal control of water loss hinders carbon assimilation and could lead to starvation during droughts. Other mechanisms of drought‐induced mortality are catastrophic xylem dysfunction, impeded long‐distance transport of carbohydrates (translocation) and also symplastic failure (cellular breakdown). However, direct empirical support is absent for either hypothesis. More experimental studies are necessary to increase our understanding of these processes and to resolve the mystery of drought‐related tree mortality. Instead of testing the validity of particular hypothesis as mechanisms of drought‐induced tree mortality, future research should aim at revealing the temporal dynamics of these mechanisms in different species and over a gradient of environmental conditions. Only such studies will reveal whether the struggle for light will become a struggle for water and/or for carbon in drought‐affected areas.  相似文献   

8.
9.
10.
The silver nanoparticles (AgNPs) prepared by chemical reduction with sodium hypophosphite as a reducing agent and sodium hexametaphosphate as a stabilising agent were highly cytotoxic against human cells (U-937 and HL-60). The aim of the study was to determine the impact of selected antioxidants: ascorbic acid (AA), gallic acid (GA), scavenger (trolox (TX)) and Ag+ chelator (N-acetylcysteine, NAC) on viability, modulation of inflammatory response and apoptosis index of cells treated by AgNPs. Selected protectants added individually or together affects the viability of cells treated by AgNPs (1?mg/L). The mixtures assuring the most efficient defense against AgNPs were: AgNPs?+?TX?+?AA, AgNPs?+?GA?+?AA, AgNPs?+?TX?+?GA?+?AA and AgNPs?+?TX?+?GA?+?AA?+?NAC which synergistically interact in the mixture. The greatest reduction in IL-6 and TNF-α levels was found for the mixture containing AgNPs?+?TX?+?GA?+?AA. Mixture of this composition exhibited also the strongest anti-apoptotic effect. Highly cytotoxic AgNPs may not damage human cells if cytoprotectants are present.  相似文献   

11.
We studied the effects of synthetic atrial natriuretic factor (ANF, 28-amino acid peptide) on base-line perfusion pressures and pressor responses to hypoxia and angiotensin II (ANG II) in isolated rat lungs and on the following hemodynamic and renal parameters in awake, chronically instrumented rats: cardiac output (CO), systemic (Rsa) and pulmonary (Rpa) vascular resistances, ANG II- and hypoxia (10.5% O2)-induced changes in Rsa and Rpa, and urine output. Intra-arterial ANF injections lowered base-line perfusion pressures and blunted hypoxia- and ANG II-induced pressor responses in the isolated lungs. Bolus intravenous injection of ANF (10 micrograms/kg) into intact rats decreased CO and arterial blood pressures of both systemic and pulmonary circulations and increased Rsa. ANG II (0.4 micrograms/kg) increased both Rsa and Rpa, and hypoxia increased Rpa alone in the intact rats. ANF (10 micrograms/kg) inhibited both ANG II- and hypoxia-induced increases in Rpa but did not significantly affect the ANG II-induced increase in Rsa. The antagonistic effect of ANF on pulmonary vasoconstriction was reversible and dose-dependent. The threshold doses of ANF required to inhibit pulmonary vasoconstriction were in the same range as those required to elicit diuresis and natriuresis. The data demonstrate that ANF has a preferential relaxant effect on pulmonary vessels constricted by hypoxia or ANG II. Both the renal and the pulmonary vascular effects of ANF may represent fundamental physiological actions of ANF. These actions may serve as a negative feedback control system that protects the right ventricle from excessive mechanical loads.  相似文献   

12.
Dithiothreitol (DTT), an inhibitor of violaxanthin de-epoxidation and zeaxanthin formation in chloroplasts, inhibited blue-light-stimulated stomatal opening in epidermal peels of Vicia faba L. in a concentration-dependent fashion. Complete inhibition was observed at 3 mM DTT. The DTT effect was specific for the stomatal response to blue light, and the red-light-stimulated opening, which depends on photosynthetic reactions in the guard cells, was unaffected. Preirradiation of stomata in epidermal peels with increasing photon fluence rates of red light, prior to an incubation in 10 mol·m-2·s-1 of blue light and 100 mol·m-2·s-1 red light, resulted in a DTT-sensitive, blue-light-stimulated opening that was proportional to the fluence rate of the red light pre-treatment. Guard cells in epidermal peels and guard-cell protoplasts irradiated with red light showed increases in their zeaxanthin content that depended on the fluence rate of red light, or on the incubation time. The increases in zeaxanthin concentration were inhibited by DTT. The obtained results indicate that zeaxanthin could function as a photoreceptor mediating the stomatal responses to blue light.Abbreviation DTT dithiothreitol This work was supported by grants from the National Science Foundation and the US Department of Energy to E.Z.  相似文献   

13.
Ectotherms decrease in size with increasing ambient temperature. Temperature–size relationships (TSR) have been observed experimentally in a wide range of animals, algae, protozoans and bacteria. However, it is still unclear whether temperature is an important factor controlling the size of organisms in natural populations. In this study, we used natural variability in water temperature in the nearshore areas of a single lake to test TSR in populations of benthic diatoms. We deployed standard tile substrates at 5 m depth (similar light availability) at cold and warm sites that were exposed to different hydrodynamic forces. We compared cell sizes of three species of diatoms (Achnanthidium minutissimum, Gomphonema acuminatum and Gyrosigma acuminatum) at these sites. Counter to the TSR, diatom cells at warm sites were either larger (Achnanthidium, Gomphonema) or similar in size (Gyrosigma) compared to those at colder sites. Diatom size was also related to site exposure (hydrodynamic forces), but differently for species with different architectures. TSR were not detectable in the field for these three species of benthic diatom, even when tested within a single ecosystem at a given time of the year. The size of benthic diatoms, however, varied in a predictable way between sites, and such differences could affect the functioning of these primary producers in different parts of the littoral zone.  相似文献   

14.
15.

Aims

Soil fungal pathogens can result in the failure of seedling establishment, but the effects of fungicide applications on seed/seedling survival have differed among studies. We assumed that the variation may relate to seed dormancy/germination characteristics and hypothesized that nondormant germinating seeds are more likely to be killed by fungal pathogens than dormant seeds.

Methods

Dormant and nondormant seeds of Stipa bungeana and Lespedeza davurica were inoculated with a pathogenic fungus Fusarium tricinctum under laboratory and field conditions. The outcomes of seed/seedling fate and other parameters were evaluated.

Results

In the laboratory, nondormant seeds inoculated with F. tricinctum developed white tufts of mycelium on the radicles of germinating seeds causing them to quickly die, but dormant seeds remained intact. In contrast, in the field inoculation with F. tricinctum did not cause higher mortality of nondormant than dormant seeds but resulted in higher percentages of seedling death before they emerged from soil than the controls.

Conclusions

Our results suggest that dormancy protects seeds from being attacked by some pathogens by preventing germination, but the protection is lost once germination has commenced. Further study involving various plant species with more seeds is needed to assess the generality of this pathogen-seed interaction hypothesis.
  相似文献   

16.
17.
Sponge tissue often contains two structural components in high concentrations: spicules of silica, and refractory fibers of protein (spongin). Some terrestrial plants contain analogous structures, siliceous inclusions and refractory lignins, that have been demonstrated to deter herbivory. We performed feeding experiments with predatory reef fish to assess the deterrent properties of the structural components of three common Caribbean demosponges, Agelas clathrodes, Ectyoplasia ferox, and Xestospongia muta. The concentrations of spicules and spongin in the tissues varied widely between the three species, but when assayed at their natural volumetric concentrations, neither spicules (all three species assayed) nor the intact spiculated spongin skeleton (A. clathrodes and X. muta assayed) deterred feeding by reef fish in aquarium or field assays using prepared foods of a nutritional quality similar to, or higher than, that of sponge tissue. Spicules deterred feeding in aquarium assays when incorporated into prepared foods of a nutritional quality lower than that of sponge tissue (15–19 times less protein), but spiculated spongin skeleton was still palatable, even in prepared foods devoid of measurable protein, and even though spicules embedded in spongin were oriented in their natural conformation. Based on comparisons of the nutritional qualities of the tissues of the three sponge species and of the prepared foods, sponge tissue would have to be much lower in food value (5 times less protein or lower) for spicules to provide an effective defense, and spicules in combination with the spongin skeleton would be unlikely to provide an effective defense regardless of the nutritional quality of the tissue. Unlike terrestrial plants, marine sponges may use silica and refractory fibers solely for structural purposes.  相似文献   

18.
19.
20.
The purpose of this study was to investigate the relationship between hamstring passive stiffness and extensibility in asymptomatic individuals with the reporting of low back pain during 2-h prolonged standing. Twenty healthy participants with no history of low back pain (mean±SD, age 22.6±2.7 years, height 1.74±0.09 m, weight 76.2±14.8 kg). Low back pain (VAS score; mm) was continuously monitored during 2-h prolonged standing. Hamstring extensibility, passive stiffness, and stretch tolerance were measured before and after prolonged standing using an instrumented straight leg raise (iSLR). Ten participants reported a clinically relevant increase (Δ VAS>10mm) in low back pain during prolonged standing. Hamstring extensiblity (leg°(max)), passive stiffness (Nm.°(-1)), and stretch tolerance (VAS; mm) were no different between pain developers and non-pain developers. No changes in hamstring measures were observed following 2-h prolonged standing. No relationship was observed in this study between measures of hamstring extensibility and the reporting of low back pain during prolonged standing. There is no evidence to recommend hamstring extensibility interventions (i.e. passive stretching) as a means of reducing pain reporting in occupations requiring prolonged standing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号