首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decomposition of soil carbon stocks is one of the largest potential biotic feedbacks to climate change. Models of decomposition of soil organic matter and of soil respiration rely on empirical functions that relate variation in temperature and soil water content to rates of microbial metabolism using soil‐C substrates. Here, we describe a unifying modeling framework to combine the effects of temperature, soil water content, and soluble substrate supply on decomposition of soluble soil‐C substrates using simple functions based on process concepts. The model's backbone is the Michaelis–Menten equation, which describes the relationship between reaction velocity and soluble organic‐C and O2 substrate concentrations at an enzyme's reactive site, which are determined by diffusivity functions based on soil water content. Temperature sensitivity is simulated by allowing the maximum velocity of the reaction (Vmax) to vary according to Arrhenius function. The Dual Arrhenius and Michaelis–Menten kinetics (DAMM) model core was able to predict effectively observations from of laboratory enzyme assays of β‐glucosidase and phenol‐oxidase across a range of substrate concentrations and incubation temperatures. The model also functioned as well or better than purely empirical models for simulating hourly and seasonal soil respiration data from a trenched plot in a deciduous forest at the Harvard Forest, in northeastern United States. The DAMM model demonstrates that enzymatic processes can be intrinsically temperature sensitive, but environmental constrains of substrate supply under soil moisture extremes can prevent that response to temperature from being observed. We discuss how DAMM could serve as a core module that is informed by other modules regarding microbial dynamics and supply of soluble‐C substrates from plant inputs and from desorption of physically stabilized soil‐C pools. Most importantly, it presents a way forward from purely empirical representation of temperature and moisture responses and integrates temperature‐sensitive enzymatic processes with constraints of substrate supply.  相似文献   

2.
3.
Copper(II) complexes of five peptide ligands containing at least three histidine residues have been tested as catalysts in catechol oxidation and superoxide dismutation. All systems exhibit considerable catechol oxidase-like activity, and the Michaelis–Menten enzyme kinetic model is applicable in all cases. Beside the Michaelis–Menten parameters, the effects of pH, catalyst and dioxygen concentration on the reaction rates are also reported. Considering the rather different sequences, the observed oxidase activity seems to be a general behavior of copper(II) complexes with multihistidine peptides. Interestingly, in all cases {Nim/2Nim,2N?} coordinated complexes are the pre-active species, the bound amide nitrogens were proposed to be an acid/base site for facilitating substrate binding. The studied copper(II)-peptide complexes are also able to effectively dismutate superoxide radical in the neutral pH range.  相似文献   

4.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

5.
Several studies have shown multiple confounding factors influencing soil respiration in the field, which often hampers a correct separation and interpretation of the different environmental effects on respiration. Here, we present a controlled laboratory experiment on undisturbed organic and mineral soil cores separating the effects of temperature, drying–rewetting and decomposition dynamics on soil respiration. Specifically, we address the following questions:
  • 1 Is the temperature sensitivity of soil respiration (Q10) dependent on soil moisture or soil organic matter age (incubation time) and does it differ for organic and mineral soil as suggested by recent field studies.
  • 2 How much do organic and mineral soil layers contribute to total soil respiration?
  • 3 Is there potential to improve soil flux models of soil introducing a multilayer source model for soil respiration?
Eight organic soil and eight mineral soil cores were taken from a Norway spruce (Picea abies) stand in southern Germany, and incubated for 90 days in a climate chamber with a diurnal temperature regime between 7 and 23°C. Half of the samples were rewetted daily, while the other half were left to dry and rewetted thereafter. Soil respiration was measured with a continuously operating open dynamic soil respiration chamber system. The Q10 was stable at around 2.7, independent of soil horizon and incubation time, decreasing only slightly when the soil dried. We suggest that recent findings of the Q10 dependency on several factors are emergent properties at the ecosystem level, that should be analysed further e.g. with regard to rhizosphere effects. Most of the soil CO2 efflux was released from the organic samples. Initially, it averaged 4.0 μmol m?2 s?1 and declined to 1.8 μmol m?2 s?1 at the end of the experiment. In terms of the third question, we show that models using only one temperature as predictor of soil respiration fail to explain more than 80% of the diurnal variability, are biased with a hysteresis effect, and slightly underestimate the temperature sensitivity of respiration. In contrast, consistently more than 95% of the diurnal variability is explained by a dual‐source model, with one CO2 source related to the surface temperature and another CO2 source related to the central temperature, highlighting the role of soil surface processes for ecosystem carbon balances.  相似文献   

6.
Cross‐linked enzyme aggregates (CLEAs) were prepared from several precipitant agents using glutaraldehyde as a cross‐linking agent with and without BSA, finally choosing a 40% saturation of ammonium sulfate and 25 mM of glutaraldehyde. The CLEAs obtained under optimum conditions were biochemically characterized. The immobilized enzyme showed higher thermal activity and a broader range of pH and organic solvent tolerance than the free enzyme. Arylesterase from Gluconobacter oxydans showed activity toward cephalosporin C and 7‐aminocephalosporanic acid. The CLEAs had a Kcat/KM of 0.9 M?1/S?1 for 7‐ACA (7‐aminocephalosporanic acid) and 0.1 M?1/S?1 for CPC (cephalosporin c), whereas free enzyme did not show a typical Michaelis–Menten kinetics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:36–42, 2016  相似文献   

7.
In radioisotope studies in plankton, bacteria turn over the nanomolar ambient concentrations of dissolved amino acids within a few hours. Uptake follows Michaelis–Menten kinetics. In contrast, within minutes the very abundant bacteria and fungi in soil take up all labeled amino acids added at nanomolar to millimolar final concentrations; uptake kinetics accordingly cannot be measured. This rapid uptake agrees with earlier findings that soil microbes exist in a starving or low-activity state but are able to keep their metabolism poised to take up amino acids as they become available. How can this rapid uptake of added amino acids be reconciled with persistent soil concentrations of 10–500 μM of total dissolved amino acids? Although respiration of added amino acid carbon has been used to deduce uptake kinetics, the data indicate that in both soil and in eutrophic natural waters constant percentages of individual amino acids are respired; this percentage varies from less than 10% of the amount taken up for basic amino acids to more than 50% for acidic amino acids. We conclude that relatively fixed internal metabolic processes control the percent of amino acid respired and that the μM concentrations of amino acid measured in water extracts from soil are unavailable to microbes. Instead, these relatively high concentrations reflect amino acids in soils that are chemically protected, hidden in pores, or released from fine roots and microbes during sample preparation.  相似文献   

8.
Enhanced soil respiration in response to global warming may substantially increase atmospheric CO2 concentrations above the anthropogenic contribution, depending on the mechanisms underlying the temperature sensitivity of soil respiration. Here, we compared short‐term and seasonal responses of soil respiration to a shifting thermal environment and variable substrate availability via laboratory incubations. To analyze the data from incubations, we implemented a novel process‐based model of soil respiration in a hierarchical Bayesian framework. Our process model combined a Michaelis–Menten‐type equation of substrate availability and microbial biomass with an Arrhenius‐type nonlinear temperature response function. We tested the competing hypotheses that apparent thermal acclimation of soil respiration can be explained by depletion of labile substrates in warmed soils, or that physiological acclimation reduces respiration rates. We demonstrated that short‐term apparent acclimation can be induced by substrate depletion, but that decreasing microbial biomass carbon (MBC) is also important, and lower MBC at warmer temperatures is likely due to decreased carbon‐use efficiency (CUE). Observed seasonal acclimation of soil respiration was associated with higher CUE and lower basal respiration for summer‐ vs. winter‐collected soils. Whether the observed short‐term decrease in CUE or the seasonal acclimation of CUE with increased temperatures dominates the response to long‐term warming will have important consequences for soil organic carbon storage.  相似文献   

9.
Abstract Roots of sterile-grown, intact 6-day-old seedlings of Ricinus communis possess at least two independent active amino acid uptake systems, one for neutral and one for basic amino acids. The kinetics of uptake of L-proline and L-arginine, which were taken as representative substrates for the two systems, are biphasic. At low concentrations (0.01–0.5 mol m?3) Michaelis -Menten kinetics prevail, changing to a linear concentration dependence at higher substrate concentrations (1–50 mol m?3). L-glutamate uptake velocity is linear over the whole substrate concentration range. For comparison the uptake kinetics of nitrate and ammonium were determined as well as interactions among the different nitrogen sources. The Km value for nitrate uptake was 0.4 mol m?3, and for ammonium 0.1 mol m?3. The uptake capacity for nitrate or ammonium was approximately the same as for amino acids. The interaction between the uptake systems for organic and inorganic nitrogen is small. Two hypotheses for the physiological significance of amino acid uptake by roots were considered: (i) Uptake of amino acids from the soil-determination of amino acids in soil and in soil water indicates that they might contribute 15–25% to the nitrogen nutrition of the plant. (ii) Amino acid uptake systems of root cells serve primarily as retrieval of amino acids delivered from the phloem- it was found that 14C L-glutamine, which was delivered to the cotyledon and transported to the root via the phloem, was not lost by the roots, whereas it appeared in the bathing medium if L-glutamine was applied externally to the root to compete for the uptake sites; this suggests that an apoplastic pool of amino acids in the root exists due to their efflux from the phloem.  相似文献   

10.
Mesoporous silica SBA-15 was modified by imidazole based ionic liquids (ILs) with various functional groups such as alkyl, amino, and carboxyl. Prepared supports (IL-SBA) were characterized by nitrogen adsorption–desorption (BET), small-angle X-ray diffraction (XRD), 13C solid-state nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), elemental analysis, and scanning electron microscopy (SEM), transmission electron microscope (TEM), and applied to immobilize Burkholderia cepacia lipase (BCL). Results revealed that modification of mesoporous material SBA-15 with ILs was a novel and efficient method to improve the properties of immobilized BCL (BCL-IL-SBA). Improved thermal stability, reusability, storage stability and stability in organic solvent of BCL-IL-SBA were obtained. BCL-IL-SBA was also less sensitive to temperature and low pH than BCL-SBA-15. Moreover, BCL-IL-SBA showed relatively high specific activity, thereinto, BCL-NH2-IL-SBA had the highest specific activity, which improved 12.39-folds compared with BCL-SBA-15. Additionally, Michaelis–Menten constant Km and the initial maximum reaction velocity Vmax of the immobilized BCLs were calculated by using Lineweaver–Burk plots and the results showed BCL-IL-SBA had better affinity towards the substrate. These improvements were associated with changes in pore structure and stronger enzyme–support surface interactions.  相似文献   

11.
Acid forest soils in the Bohemian Forest in Central Europe are biogeochemically imbalanced in organic C, N and P processing. We hypothesized that these imbalances can be due to different temperature sensitivities of soil enzyme activities and their affinities to substrate in litter and organic soil horizons. We measured potential activities of five main soil enzymes (β-glucosidase, cellobiohydrolase, Leu-aminopeptidase, Ala-aminopeptidase, and phosphatase) responsible for organic carbon, nitrogen and phosphorus acquisition. We also modeled potential in situ enzyme activities and nutrient release based on continuous in situ temperature measurements. We determined basic kinetic parameters (Km, Vmax), enzyme efficiencies (kcat) and temperature sensitivities (Ea and Q10) according to Michaelis–Menten kinetic and modified Arrhenius models. Our results showed significant differences in substrate affinities between the litter and organic soil horizons. Higher aminopeptidase affinity (lower Km) in the litter soil horizon can lead to leaching of peptidic compounds to lower soil horizons. β-Glucosidase and phosphatase showed high temperature response following the Arrhenius model. However, both aminopeptidases showed no or even decreased activity with increasing temperature. The aminopeptidase temperature insensitivity means that peptidic compounds are degraded at the same or even lower rate in warmer and colder periods of the year in acid forest soils. This imbalance results in different release of available nutrients from plant litter and soil organic matter which may affect bacterial and fungal community composition and nutrient leaching from these ecosystems.  相似文献   

12.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   

13.
Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7–128 years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9 ± 1 to 160 ± 67 g CO2–C m?2 year?1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70 % of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58–78 years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90 %, while with further soil formation, heterotrophically respired C probably from accumulated ‘older’ soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10 cm depth was small, but increased similarly from 0.4 ± 0.02 to 7.4 ± 1.6 g DOC m?2 year?1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9 ± 1 to 70 ± 17 and further to 168 ± 68 g C m?2 year?1 at the <10, 58–78, and 110–128 year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1 kg C m?2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rocks.  相似文献   

14.
Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long‐term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO2 during so‐called “priming effects”. Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross‐continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 μmol CO2 m?2 s?1) than at Wytham (2.7 μmol CO2 m?2 s?1) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.  相似文献   

15.
The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives (tButyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin–tButyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin–tButyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 × 10?2 U mg protein?1 at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (Vmax, Km, kcat and kcat/Km) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis–Menten plot. Furthermore, the stability of the protein–calixarene complex was investigated for different initial pH values and half-life (t1/2) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin–calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.  相似文献   

16.
The use of good electro-active polyaniline at high pH for immobilizing glucose oxidase is reported. The response current increased with increasing potential from 0.35 to 0.70 V. The maximum response current occurred at about pH 7.0. The relationship between response current and the glucose concentration was linear from 0.005 to 10.0 mmol dm?3. The Michaelis–Menten constant Km', maximum response current imax and the apparent activation energy (Ea) were 31.59 mmol dm?3, 21.28 µA and 32.58 kJ mol?1, respectively. The response currents of the biosensor increased with increasing temperature. The biosensor was characterized by FTIR, UV-Vis spectra and AC impedance.  相似文献   

17.
To assess the variation of soil respiration at different forest stages we measured it in a coppiced oak (Quercus cerris L.) chronosequence in central Italy during two campaigns, spanning 2 successive years, in four stands at different stages of the rotation: 1 year (S1), 5 years (S5), 10 years (S10) and 17 years (S17) after coppicing. The contribution of the different components of soil respiration flux (aboveground litter, belowground decomposition soil organic matter and root respiration) was estimated by a paired comparison of manipulative experiments between the recently coppiced stand (S1) and mature stand (S17). Ninety percent of soil respiration values were between 1.7 and 7.8 μmol m?2 s?1, with an overall mean (±SD) of 4.0±2.7 μmol m?2 s?1. Spatial variation of soil respiration was high (CV=44.9%), with a mean range (i.e. patch size) of 4.8±2.7 m, as estimated from a semivariance analysis. In the absence of limitation by soil moisture, soil respiration was related to soil temperature with the exponential Q10 model (average Q10=2.25). During summer, soil moisture constrained soil respiration and masked its dependence on soil temperature. Soil respiration declined over the years after coppicing. Assuming a linear decline with stand age, we estimated a reduction of 24% over a 20‐year‐rotation cycle. The response of soil respiration to temperature also changed with age of the stands: the Q10 was estimated to decrease from 2.90 in S1 to 2.42 in S17, suggesting that different components or processes may be involved at different developmental stages. The contribution of heterotrophic respiration to total soil respiration flux was relatively larger in the young S1 stand than in the mature S17 stand.  相似文献   

18.
裴广廷  马红亮  林伟  高人  尹云锋  杨柳明 《生态学报》2015,35(23):7774-7784
为探究氨基酸氮形态对亚热带土壤氮素含量及转化的影响,选择建瓯市万木林保护区的山地红壤为对象,采用室内培养实验法,通过设计60%和90%WHC两种土壤含水量并添加不同性质氨基酸,测定了土壤中铵态氮、硝态氮、可溶性有机氮的含量和氧化亚氮的释放量,分析了可溶性有机碳、土壤p H值的大小变化及其与氮素的相互关系。结果表明:与对照处理相比,氨基酸添加显著增加了土壤NH_4~+-N含量并使土壤p H值升高,且在一定程度上解除了高含水量(90%WHC)对NH_4~+-N产生的抑制,其中甲硫氨基酸的效果最为明显。酸性、碱性、中性氨基酸对土壤NO_3~--N含量和N_2O释放影响不显著,但甲硫氨基酸可显著抑制土壤硝化从而导致NH_4~+-N的积累,并在培养前期抑制土壤N_2O产生而在培养后期促进N_2O释放,总体上促进N_2O释放。60%WHC的氨基酸添加处理较90%WHC条件下降低土壤可溶性有机氮的幅度更大。氨基酸对土壤氮素转化的影响与带电性关系较小,而可能与其分解产物密切相关。可见,不同性质氨基酸处理对森林土壤氮素含量及转化存在不同程度的影响,且甲硫氨基酸对土壤氮素转化的影响机理值得深入研究。  相似文献   

19.
A method is described for determining biodegradation kinetics of both naturally occurring and xenobiotic compounds in surface and sub-surface soil samples. The method measures both respiration and uptake into cellular biomass of14C-labeled substrates. The estimation of biomass incorporation entailed removal of cells from soil particles by washing the soil with a polyvinyl-pyrrolidone/pyrophosphate solution and H2O2. After separation of the cells and the soil particles by centrifugation, the cells were trapped on membrane filters for liquid scintillation counting. Mass balances were easily obtained. The technique was used to measure metabolic activity in soil profiles, including unsaturated and saturated zones. First order rate constants (K1) were in the range of 10–3–10–2 hour–1 for amino acid metabolism and 10–5–10–4 hour–1 for m-cresol metabolism. Saturation kinetics were observed for amino acids and m-cresol. m-Cresol K1 values for uptake often exceeded those for respiration by greater than a factor of ten. Vmax values were low (amino acids, 101–102 ng g–1 hour–1; m-cresol, 10–1 ng g–1 hour–1), whereas Km values were quite high (amino acids, 103–104 ng g–1; m-cresol 103–105 ng g–1). Saturation was not observed in many horizons even at 105 ng g–1 dry soil. Frequently, respiration obeyed saturation kinetics whereas uptake was first order. It is concluded that measuring only kinetics of respiration may lead to severe underestimations of biodegradation rates.  相似文献   

20.
The short term uptake of phosphate involving 10 min absorption followed by 5 min desorption, both at 30 °C, in the concentration range 1.0×10?9 to 7.5×10?2 M KH2PO4 by fresh and washed maize (Zea mays L. cv. Ganga Safed-2) roots can be described by a single isotherm having five phases (0 and I–IV) with regularly spaced kinetic constants. Almost identical kinetics were observed in both fresh and washed maize roots. The kinetics of phase 0 in the concentration range 1.0×10?9–3.0×10?5 M. was sigmoidal in fresh maize roots, however, in washed tissue exhibited 2 phases termed here as 0a and 0b. 0a covered the concentration range 1.0×10?9–5.0×10?6 M and 0b 6.0×10?6–3.0×10?5 M. In the concentration range 1.0×10?4–7.5×10?2 M four distinct phases, termed as I, II, III and IV were evident in both fresh and washed maize roots. Each phase obeyed Michaelis—Menten kinetics. The values of Km and Vmax have been estimated for each phase. The uptake isotherm was accompanied by discontinuous transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号