首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
施硅对增温稻田CH4和N2O排放的影响   总被引:4,自引:0,他引:4  
刘燕  娄运生  杨蕙琳  周东雪 《生态学报》2020,40(18):6621-6631
夜间增温幅度大于白天是气候变暖的显著特征。夜间增温影响水稻生产及CH4和N2O排放。硅是作物有益元素,施硅可提高产量,减少稻田CH4排放。增温或施硅单因子对稻田CH4和N2O排放影响已有报道,但二者耦合如何影响水稻生产及稻田CH4和N2O排放,尚不清楚。通过田间模拟试验,研究了夜间增温下施硅对水稻生长、产量及温室气体持续增温/冷却潜势和排放强度的影响。采用铝箔反光膜夜间(19:00-6:00)覆盖水稻冠层进行模拟夜间增温试验。增温设2水平,即常温对照(CK)和夜间增温(NW);施硅量设2水平,即Si0(不施硅)和Si1(钢渣硅肥,200 kgSiO2/ha)。结果表明,施硅可缓解夜间增温对水稻根系活力的抑制作用,降低夜间增温对水稻地上部、地下部干重和产量的抑制作用。夜间增温显著提高CH4累计排放量,而施硅显著降低CH4累计排放量。夜间增温下施硅处理稻田CH4累计排放量在分蘖期、拔节期、抽穗-扬花期和灌浆成熟期比未施硅处理分别低48.12%、49.16%、61.59%和39.13%。夜间增温或施硅均促进稻田N2O排放,夜间增温下施硅在上述生育期以及全生育期的累计排放量依次比对照高78.17%、51.45%、52.01%、26.14%和40.70%。研究认为,施硅可缓解夜间增温对稻田综合增温潜势和排放强度的促进作用。  相似文献   

2.
Yearly and seasonal (rainy and dry seasons) variations of CH4 emission from a Sumatra paddy field were measured for 3 years. The mean CH4 emission rates during the growth period were in the range of 16.0–26.1 mg CH4 m-2 h-1 for the chemical fertilizer plots and 23.3–34.9 mg CH4 m-2 h-1 for the plots with rice straw application, respectively. The increase in the amounts of CH4 emission by rice straw application were from 1.3 to 1.6 times. There was no significant difference in the mean CH4 emission rates between rainy and dry seasons.Total amounts of CH4 emitted during the period of rice growth were in the ranges of 29.5–48.2 and 43.0–64.6 g CH4 m-2 for the plots applied with chemical fertilizer and those with rice straw application, respectively. Nearly the same amounts of CH4 were emitted in the first and second half of the growth period, irrespective of rice straw application.  相似文献   

3.
张怡  吕世华  马静  徐华  袁江  董瑜皎 《生态学报》2016,36(4):1095-1103
采用静态箱-气相色谱法观测冬季水分管理和水稻覆膜栽培对川中丘陵地区冬水田全年的CH_4排放通量。试验设置持续淹水(CF)、冬季直接落干+稻季淹水(TF)与冬季覆膜落干+稻季覆膜(PM)3个处理。结果表明,冬季休闲期,CF、TF和PM处理CH_4排放分别为16.1、1.4 g/m~2和2.7 g/m~2;水稻生长期,CF、TF和PM处理CH_4排放分别为57.7、27.7 g/m~2和13.5 g/m~2。相较于CF处理,TF与PM处理分别减少其全年CH_4排放60.6%和78.0%。TF与PM处理水稻生长期CH_4排放峰值分别较CF处理低33.0%和56.1%。休闲期,TF、PM处理厢面与厢沟区域CH_4排放与土壤温度显著正相关(P0.05),与土壤氧化还原电位(土壤Eh)显著负相关(P0.05),而CF处理CH_4排放仅与土壤温度显著正相关(P0.05)。水稻生长期,CF处理CH_4排放与土壤温度显著正相关(P0.05),与土壤Eh显著负相关(P0.05),TF处理CH_4排放仅与土壤Eh显著负相关(P0.05),PM处理厢沟CH_4排放与土壤Eh显著正相关(P0.05)。各处理水稻生长期土壤可溶性有机碳含量(DOC)与微生物生物量碳含量(MBC)显著高于休闲期(P0.05)。研究结果为进一步研究冬水田全年CH_4排放规律及寻求有效的减排措施提供数据支撑和科学依据。  相似文献   

4.

Aims

Two pot experiments in a “walk-in” growth chamber with controlled day and night temperatures were conducted to investigate the influence of elevated temperatures along with rice straw incorporation on methane (CH4) and nitrous oxide (N2O) emissions as well as rice yield.

Methods

Three temperature regimes–29/25, 32/25, and 35/30 °C (Exp. I) and 29/22, 32/25, and 35/28 °C (Exp. II), representing daily maxima/minima were used in the study. Two amounts of rice straw (0 and 6 t ha?1) were applied with four replications in each temperature regime. CH4 and N2O emissions as well as soil redox potential (Eh) were monitored weekly throughout the rice-growing period.

Results

Elevated temperatures increased CH4 emission rates, with a more pronounced effect from flowering to maturity. The increase in emissions was further enhanced by incorporation of rice straw. A decrease in soil Eh to <?100 mV and CH4 emissions was observed early in rice straw–incorporated pots while the soil without straw did not reach negative Eh levels (Exp. I) or showed a delayed decrease (Exp. II). Moreover, soil with high organic C (Exp. II) had higher CH4 emissions. In contrast to CH4 emissions, N2O emissions were negligible during the rice-growing season. The global warming potential (GWP) was highest at high temperature with rice straw incorporation compared with low temperature without rice straw. On the other hand, the high temperature significantly increased spikelet sterility and reduced grain yield (p?<?0.05).

Conclusions

Elevated temperature increased GWP while decreased rice yield. This suggests that global warming may result in a double negative effect: higher emissions and lower yields.  相似文献   

5.
Rice cultivation is an important anthropogenic source of atmospheric methane (CH4), the emission of which is affected by management practices. Many field measurements have been conducted in major rice‐producing countries in Asia. We compiled a database of CH4 emissions from rice fields in Asia from peer‐reviewed journals. We developed a statistical model to relate CH4 flux in the rice‐growing season to soil properties, water regime in the rice‐growing season, water status in the previous season, organic amendment and climate. The statistical results showed that all these variables significantly affected CH4 flux, and explained 68% of the variability. Organic amendment and water regime in the rice‐growing season were the top two controlling variables; climate was the least critical variable. The average CH4 fluxes from rice fields with single and multiple drainages were 60% and 52% of that from continuously flooded rice fields. The flux from fields that were flooded in the previous season was 2.8 times that from fields previously drained for a long season and 1.9 times that from fields previously drained for a short season. In contrast to the previously reported optimum soil pH of around neutrality, soils with pH of 5.0–5.5 gave the maximum CH4 emission. The model results demonstrate that application of rice straw at 6 t ha?1 before rice transplanting can increase CH4 emission by 2.1 times; when applied in the previous season, however, it increases CH4 emission by only 0.8 times. Default emission factors and scaling factors for different water regimes and organic amendments derived from this work can be used to develop national or regional emission inventories.  相似文献   

6.
稻田秸秆还田:土壤固碳与甲烷增排   总被引:38,自引:0,他引:38  
基于我国农田土壤有机质长期定位试验和稻田甲烷排放试验成果,将全国稻田划分为单季区和双季区.根据土壤有机质试验数据,分析了秸秆还田在我国两个稻田区的单季稻田、水旱轮作稻田和双季稻田的固碳潜力.同时根据我国稻田甲烷排放试验数据,采用取平均排放系数的方法,估算了我国稻田在无秸秆还田情况下的甲烷排放总量;结合IPCC推荐的方法和参数,估算了我国稻田秸秆还田后甲烷排放总量及增排甲烷的全球增温潜势.结果表明:在中国稻田推广秸秆还田的固碳潜力为10.48TgC.a-1,对减缓全球变暖的贡献为38.43TgCO2-eqv.a-1;但秸秆还田后稻田甲烷排放将从无秸秆还田的5.796Tg.a-1增加到9.114Tg.a-1;秸秆还田引起甲烷增排3.318Tg.a-1,其全球增温潜势达82.95TgCO2-eqv.a-1,为土壤固碳减排潜力的2.158倍.可见,推广秸秆还田后,中国稻田增排甲烷的温室效应会大幅抵消土壤固碳的减排效益,是一项重要的温室气体泄漏.  相似文献   

7.
Methane flux was measured for a rice/wheat agroecosystem of Gangetic Plains, with and without application of chemical fertilizer and wheat straw (WS). Three treatments of control, fertilizer application and fertilizer + WS application, were established in a completely randomized block design and measurements were made for two consecutive years (1993 and 1994). CH4 measurements during growth of the rice crop period showed that there were significant difference in flux rates during the two years. Maximum emission occurred at the time of anthesis and minimum at the seedling stage. The flux rates were significantly higher for fertilizer or fertilizer + WS treatments. The effects of the treatments were similar across phenological stages and years. In the subsequent wheat crop and fallow period, the soils consumed CH4. There were significant differences in CH4 uptake rates between the two years. Fertilizer treatments reduced CH4 uptake in both the years. The results suggested that tropical agroecosystems may consume substantial amounts of CH4 and that the methane output can be reduced by lowering the submergence level in rice paddies.  相似文献   

8.
王颖  娄运生  石一凡  郑泽华  左慧婷 《生态学报》2018,38(14):5099-5108
昼夜不对称增温是全球气候变化的主要特征之一,有关夜间增温对稻田甲烷(CH_4)排放影响的报道尚不多见。通过田间模拟试验,研究了被动式夜间增温下水稻田CH_4排放及高光谱的特征,并用高光谱数据对稻田甲烷排放进行定量模拟。田间试验设夜间增温(NW)和对照处理(CK),夜间增温即在整个水稻生育期的夜间(19:00—6:00)用铝箔反射膜覆盖水稻冠层。结果表明,夜间增温显著促进水稻拔节期和抽穗期-灌浆期CH_4排放。水稻冠层近红外光谱反射率表现为,在分蘖期和拔节期时,NWCK;而在抽穗-灌浆期和成熟期时,CKNW。水稻冠层光谱反射率、一阶导数光谱及光谱特征值均与CH_4排放通量显著相关,相关系数最大可达0.8(P0.01),其中以"蓝边面积"(SD_b)构成的二次多项式模型模拟精度和检验精度综合最佳,决定系数R~2分别为0.70和0.72。研究结果对稻田CH_4排放通量遥感监测的可行性提供了理论依据和技术支持。  相似文献   

9.
UV-B辐射增强对抗除草剂转基因水稻 CH4排放的影响   总被引:2,自引:0,他引:2  
娄运生  周文鳞 《生态学报》2012,32(15):4731-4736
在大田条件下,研究了UV-B(ultraviolet-B)辐射增强对抗除草剂转基因水稻及亲本常规水稻甲烷(CH4)排放的影响。UV-B辐射设2水平,即对照(CK,自然光),增强(Elevated,14.4 kJ·m-·2d-1),相当于南京地区大气臭氧耗损25%的辐射剂量。结果表明,UV-B辐射增强并没有改变稻田CH4排放通量的季节性变化规律。与对照相比,UV-B辐射增强显著提高CH4排放通量和累积排放量。水稻分蘖期CH4累积排放量最高,占全生育累积排放量的51.55%—61.01%;其次是拔节至孕穗期,占20.00%—26.64%。抗除草剂转基因水稻的CH4排放通量和累积排放量显著低于亲本常规水稻。研究说明,UV-B辐射增强下种植抗除草剂转基因水稻对于减缓稻田甲烷排放有积极意义。  相似文献   

10.
Paddy field, being a man-made wetland, is recognized as one of the major sources of global methane (CH4) emission. Since China has the second-largest area of rice cultivation in the world, it is important to develop valid and reliable strategies to reduce CH4 emission and sustain rice productivity in Chinese paddy fields. In this study, we applied steel slag fertilizer, a by-product of steel industry with a high concentration of active iron (Fe), at rates of 0, 2, 4, and 8 Mg ha?1 in subtropical rice (Oryza sativa L.) paddy fields in China to assess the effect of steel slag amendment on CH4 emissions as well as rice growth and yield characteristics. Results showed that the Fe concentrations in paddy soils significantly increased with the application levels of steel slag fertilizer. Steel slag amendment in paddy fields largely reduced the CH4 production rate, resulting in a decrease in the overall CH4 emission rate. In response to the applications of steel slag at a rate of 2, 4 and 8 Mg ha?1, total CH4 emission during rice cultivation decreased by 26.6, 43.3 and 49.3 %, respectively. Furthermore, steel slag amendment had a significant, positive effect on the rice grain yield and the percentage of ripened grain, most probably due to the increased availability of inorganic nutrients such as silicate and manganese. Our results suggest that steel slag can be an effective soil amendment for reducing CH4 emissions as well as increasing rice productivity in subtropical paddy fields in China.  相似文献   

11.
以中国科学院辽宁沈阳农田生态系统国家野外科学观测研究站连续两年的试验平台为依托,以潮棕壤为供试土壤,开展了稳定性氮肥配合秸秆还田对水稻产量及N2O和CH4排放的影响研究,设置对照(CK)、尿素(U)、尿素+脲酶抑制剂+硝化抑制剂(U+I)、秸秆还田(S)、秸秆还田+尿素(S+U)、秸秆还田+尿素+脲酶抑制剂+硝化抑制剂(S+U+I)6个处理.结果表明: 与CK相比,尿素显著提高了水稻产量、N2O和CH4累积排放及全球增温潜势.硝化抑制剂和脲酶抑制剂与尿素配施可显著减缓N2O的累积排放.秸秆还田显著增加了N2O和CH4累积排放、全球增温潜势和温室气体排放强度.S+U+I处理水稻产量最高,但温室气体排放强度也显著高于其他处理;U+I处理产量略低于S+U+I,但温室气体排放强度最小.秸秆单独还田处理作物产量与对照相比无显著差异.在东北潮棕壤发育的水田中,S+U+I和U+I是相对较优的施肥模式.  相似文献   

12.
以中国科学院辽宁沈阳农田生态系统国家野外科学观测研究站连续两年的试验平台为依托,以潮棕壤为供试土壤,开展了稳定性氮肥配合秸秆还田对水稻产量及N2O和CH4排放的影响研究,设置对照(CK)、尿素(U)、尿素+脲酶抑制剂+硝化抑制剂(U+I)、秸秆还田(S)、秸秆还田+尿素(S+U)、秸秆还田+尿素+脲酶抑制剂+硝化抑制剂(S+U+I)6个处理.结果表明: 与CK相比,尿素显著提高了水稻产量、N2O和CH4累积排放及全球增温潜势.硝化抑制剂和脲酶抑制剂与尿素配施可显著减缓N2O的累积排放.秸秆还田显著增加了N2O和CH4累积排放、全球增温潜势和温室气体排放强度.S+U+I处理水稻产量最高,但温室气体排放强度也显著高于其他处理;U+I处理产量略低于S+U+I,但温室气体排放强度最小.秸秆单独还田处理作物产量与对照相比无显著差异.在东北潮棕壤发育的水田中,S+U+I和U+I是相对较优的施肥模式.  相似文献   

13.
长期施肥对双季稻田甲烷排放和关键功能微生物的影响   总被引:3,自引:0,他引:3  
研究不同施肥措施对双季稻田甲烷(CH_4)排放特征的影响及其微生物学机理,对合理利用及评价不同施肥模式对水稻生长的影响具有重要意义。以长期施肥定位试验田为平台,采用静态箱-气相色谱法对施用化肥(MF:mineral fertilizer alone)、秸秆还田配施化肥(RF:rice residues plus mineral fertilizer)、30%有机肥配施70%化肥(LOM:30%organic matter plus 70%mineral fertilizer)、60%有机肥配施40%化肥(HOM:60%organic matter plus 40%mineral fertilizer)和无肥(CK:without fertilizer)条件下双季稻田CH_4排放及其微生物学机理进行了分析。结果表明,早稻和晚稻生长期,不同施肥处理稻田CH_4排放通量均显著高于CK,表现为HOMLOMRFMFCK。各处理间CH_4总排放量差异达显著水平,其大小顺序与排放通量趋势一致,以HOM处理为最高,比CK处理增加105.56%,其次是LOM和RF处理,分别比CK处理增加72.97%和54.17%。关键功能土壤微生物测定结果表明,早稻和晚稻各个主要生育时期,各处理稻田土壤产甲烷古菌的数量变化范围为(3.18—81.07)×10~3cfu/g,土壤甲烷氧化细菌的数量变化范围为(24.82—379.72)×10~3cfu/g。稻田土壤产甲烷古菌和甲烷氧化细菌数量大小顺序为HOMLOMRFMFCK,各施肥处理均显著高于CK;HOM、LOM、RF处理显著高于MF、CK处理。双季稻田CH_4排放与稻田土壤产甲烷古菌、甲烷氧化细菌数量变化关系密切。采用有机无机肥配施促进了双季稻田生态系统CH_4的排放和关键功能微生物的数量。  相似文献   

14.
Indirect emission of nitrous oxide (N2O), associated with nitrogen (N) leaching and runoff from agricultural lands is a major source of atmospheric N2O. Recent studies have shown that carbon dioxide (CO2) and methane (CH4) are also emitted via these pathways. We measured the concentrations of three dissolved greenhouse gases (GHGs) in the subsurface drainage from field lysimeter that had a shallow groundwater table. Aboveground fluxes of CH4 and N2O were monitored using an automated closed‐chamber system. The annual total emissions of dissolved and aboveground GHGs were compared among three cropping systems; paddy rice, soybean and wheat, and upland rice. The annual drainage in the paddy rice, the soybean and wheat, and the upland rice plots was 1435, 782, and 1010 mm yr?1, respectively. Dissolved CO2 emissions were highest in the paddy rice plots, and were equivalent to 1.05–1.16% of the carbon storage in the topsoil. Dissolved CH4 emissions were also higher in the paddy rice plots, but were only 0.03–0.05% of the aboveground emissions. Dissolved N2O emissions were highest in the upland rice plots, where leached N was greatest due to small crop biomass. In the soybean and wheat plots, large crop biomass, due to double cropping, decreased the drainage volume, and thus decreased dissolved GHG emissions. Dissolved N2O emissions from both the soybean and wheat plots and the upland rice plots were equivalent to 50.3–67.3% of the aboveground emissions. The results indicate that crop type and rotation are important factors in determining dissolved GHG emissions in the drainage from a crop field.  相似文献   

15.

Aims

A pot study spanning four consecutive crop seasons was conducted to compare the effects of successive rice straw biochar/rice straw amendments on C sequestration and soil fertility in rice/wheat rotated paddy soil.

Methods

We adopted 4.5 t ha?1, 9.0 t ha?1 biochar and 3.75 t ha?1 straw for each crop season with an identical dose of NPK fertilizers.

Results

We found no major losses of biochar-C over the 2-year experimental period. Obvious reductions in CH4 emission were observed from rice seasons under the biochar application, despite the fact that the biochar brought more C into the soil than the straw. N2O emissions with biochar were similar to the controls without additives over the 2-year experimental period. Biochar application had positive effects on crop growth, along with positive effects on nutrient (N, P, K, Ca and Mg) uptake by crop plants and the availability of soil P, K, Ca and Mg. High levels of biochar application over the course of the crop rotation suppressed NH3 volatilization in the rice season, but stimulated it in the wheat season.

Conclusions

Converting straw to biochar followed by successive application to soil is viable for soil C sequestration, CH4 mitigation, improvements of soil and crop productivity. Biochar soil amendment influences NH3 volatilization differently in the flooded rice and upland wheat seasons, respectively.  相似文献   

16.
Straw return has been widely recommended as an environmentally friendly practice to manage carbon (C) sequestration in agricultural ecosystems. However, the overall trend and magnitude of changes in soil C in response to straw return remain uncertain. In this meta‐analysis, we calculated the response ratios of soil organic C (SOC) concentrations, greenhouse gases (GHGs) emission, nutrient contents and other important soil properties to straw addition in 176 published field studies. Our results indicated that straw return significantly increased SOC concentration by 12.8 ± 0.4% on average, with a 27.4 ± 1.4% to 56.6 ± 1.8% increase in soil active C fraction. CO2 emission increased in both upland (27.8 ± 2.0%) and paddy systems (51.0 ± 2.0%), while CH4 emission increased by 110.7 ± 1.2% only in rice paddies. N2O emission has declined by 15.2 ± 1.1% in paddy soils but increased by 8.3 ± 2.5% in upland soils. Responses of macro‐aggregates and crop yield to straw return showed positively linear with increasing SOC concentration. Straw‐C input rate and clay content significantly affected the response of SOC. A significant positive relationship was found between annual SOC sequestered and duration, suggesting that soil C saturation would occur after 12 years under straw return. Overall, straw return was an effective means to improve SOC accumulation, soil quality, and crop yield. Straw return‐induced improvement of soil nutrient availability may favor crop growth, which can in turn increase ecosystem C input. Meanwhile, the analysis on net global warming potential (GWP) balance suggested that straw return increased C sink in upland soils but increased C source in paddy soils due to enhanced CH4 emission. Our meta‐analysis suggested that future agro‐ecosystem models and cropland management should differentiate the effects of straw return on ecosystem C budget in upland and paddy soils.  相似文献   

17.

Aims

Effects of different soil amendments were investigated on methane (CH4) emission, soil quality parameters and rice productivity in irrigated paddy field of Bangladesh.

Methods

The experiment was laid out in a randomized complete block design with five treatments and three replications. The experimental treatments were urea (220 kg ha?1) + rice straw compost (2 t ha?1) as a control, urea (170 kg ha?1) + rice straw compost (2 t ha?1) + silicate fertilizer, urea (170 kg ha?1) + sesbania biomass (2 t ha?1 ) + silicate fertilizer, urea (170 kg ha?1) + azolla biomass (2 t ha?1) + cyanobacterial mixture 15 kg ha?1 silicate fertilizer, urea (170 kg ha?1) + cattle manure compost (2 t ha?1) + silicate fertilizer.

Results

The average of two growing seasons CH4 flux 132 kg ha?1 was recorded from the conventional urea (220 kg ha?1) with rice straw compost incorporated field plot followed by 126.7 (4 % reduction), 130.7 (1.5 % reduction), 116 (12 % reduction) and 126 (5 % reduction) kg CH4 flux ha?1 respectively, with rice straw compost, sesbania biomass, azolla anabaena and cattle manure compost in combination urea and silicate fertilizer applied plots. Rice grain yield was increased by 15 % and 10 % over the control (4.95 Mg ha?1) with silicate plus composted cattle manure and silicate plus azolla anabaena, respectively. Soil quality parameters such as soil organic carbon, total nitrogen, microbial biomass carbon, soil redox status and cations exchange capacity were improved with the added organic materials and azolla biofertilizer amendments with silicate slag and optimum urea application (170 kg ha?1) in paddy field.

Conclusion

Integrated application of silicate fertilizer, well composted organic manures and azolla biofertilizer could be an effective strategy to minimize the use of conventional urea fertilizer, reducing CH4 emissions, improving soil quality parameters and increasing rice productivity in subtropical countries like Bangladesh.  相似文献   

18.
李志慧  王艺霏  邓祥征 《生态学报》2024,44(9):3814-3829
稻田甲烷排放是农业源甲烷排放的主要来源。东北黑土地区是我国最大的粮食生产基地,农业温室气体减排是实现黑土地永续利用的关键议题之一。运用稻田甲烷排放模型(CH4MOD)核算并分析了2009-2018年东北黑土地区稻田甲烷排放的时空演变特征,结合GOSAT卫星遥感数据探究了水稻生产与区域甲烷排放的时空动态联系,进一步量化了稻田甲烷对区域甲烷排放的贡献程度及不同情景下的排放潜力。结果表明,受水稻生产面积扩张和排放强度提高的影响,东北黑土地区稻田甲烷排放总量从2009年的39.05万t增加到2018年的79.53万t。东北黑土地区区域甲烷排放在季节变化和栅格单元上表现出与稻田甲烷排放较为一致的时空动态,大规模的稻田耕作可能会增加水稻生产与区域甲烷排放直接相关的可能性。随着水稻持续扩种稳产,2018年东北黑土地区水稻生产贡献了区域甲烷排放总量的15.04%,其中黑龙江省的贡献率高达31.06%。在基准发展情景下,预计2035年东北黑土地区稻田CH4排放量较2018年增加19.5%;在粮食供给保障情景下,维持当前稻田耕作面积,水稻生产集约化程度提高,预计其稻田CH4排放量较2018年减少0.88%;在此基础上,采取促进秸秆还田、增施有机肥、实施节水间歇灌溉等稻田管理措施将使稻田CH4排放量增加17.8%-63.6%。以满足膳食需求和供给保障为导向,优化水稻种植结构、控制稻田耕作面积,推动技术进步、品种改良以提升单产水平,采取化肥和有机肥搭配施用、节水间歇灌溉等途径能够缓解稻田甲烷排放。研究综合运用自上而下的遥感数据和自下而上的模型运算,刻画了水稻生产与区域甲烷排放的时空联系,进一步评估了稻田甲烷的排放潜力及减排措施的减排效果,为促进东北黑土地区农业甲烷减排和生产布局优化提供了理论依据和决策参考。  相似文献   

19.
Options for mitigating methane emission from a permanently flooded rice field   总被引:19,自引:0,他引:19  
Permanently flooded rice fields, widely distributed in south and south‐west China, emit more CH4 than those drained in the winter crop season. For understanding CH4 emissions from permanently flooded rice fields and developing mitigation options, CH4 emission was measured year‐round for 6 years from 1995 to 2000, in a permanently flooded rice field in Chongqing, China, where two cultivations with four treatments were prepared as follows: plain‐cultivation, summer rice crop and winter fallow with floodwater layer annually (convention, Ch‐FF), and winter upland crop under drained conditions (Ch‐Wheat); ridge‐cultivation without tillage, summer rice and winter fallow with floodwater layer annually (Ch‐FFR), and winter upland crop under drained conditions (Ch‐RW), respectively. On a 6‐year average, compared to the treatments with floodwater in the winter crop season, the CH4 flux during rice‐growing period from the treatments draining floodwater and planting winter crop was reduced by 42% in plain‐cultivation and by 13% in ridge‐cultivation (P < 0.05), respectively. The reduction of annual CH4 emission reached 68 and 48%, respectively. Compared to plain‐cultivation (Ch‐FF), ridge‐cultivation (Ch‐FFR) reduced annual CH4 emission by 33%, and which was mainly occurred in the winter crop season. These results indicate that draining floodwater layer for winter upland crop growth was not only able to prevent CH4 emission from permanently flooded paddy soils directly in the winter crop season, but also to reduce CH4 emission substantially during the following rice‐growing period. As an alternative to the completely drainage of floodwater layer in the winter crop season, ridge‐cultivation could also significantly mitigate CH4 emissions from permanently flooded rice fields.  相似文献   

20.
控释氮肥对抗除草剂转基因水稻田土壤甲烷排放的影响   总被引:3,自引:0,他引:3  
周文鳞  娄运生 《生态学报》2014,34(16):4555-4560
采用温室盆栽和静态箱-气相色谱法,研究了控释氮肥对抗除草剂转基因水稻和亲本常规水稻稻田土壤甲烷(CH4)排放的影响。供试土壤为潴育型水稻土,氮肥种类为尿素和控释氮肥。结果表明,与对照(尿素)相比,控释氮肥提高了水稻分蘖数、株高、生物量及产量。水稻品种对CH4季节性排放规律没有明显影响,CH4排放通量基本表现为,自水稻移栽后逐渐升高,移栽后62—92 d出现峰值,而后逐渐降低至水稻收获。与对照相比,控释氮肥可显著降低CH4排放通量和全生育期累积排放量。抗除草剂转基因水稻稻田土壤CH4排放通量和累积排放量均显著低于亲本常规水稻。研究认为,一次性基施控释氮肥和种植抗除草剂转基因水稻对有效减缓稻田甲烷排放具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号