首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glasshouse experiment was undertaken to provide baseline data on the variation between conventional maize (Zea mays L.) varieties and genetically modified maize plants expressing the insecticidal Bacillus thuringiensis protein (Bt, Cry1Ab). The objective was to determine whether the variation in soil parameters under a range of conventional maize cultivars exceeded the differences between Bt and non-Bt maize cultivars. Variations in plant growth parameters (shoot and root biomass, percentage carbon, percentage nitrogen), Bt protein concentration in shoots, roots and soil, soil nematode abundance and soil microbial community structure were determined. Eight paired varieties (i.e. varieties genetically modified to express Bt protein and their near-isogenic control varieties) were investigated, together with a Bt variety for which no near-isogenic control was available (NX3622, a combined transformant expressing both Bt and herbicide tolerance) and a conventional barley (Hordeum vulgare L.) variety which was included as a positive control. The only plant parameter which showed a difference between Bt varieties and near-isogenic counterparts was the shoot carbon to nitrogen ratio; this was observed for only two of the eight varieties, and so was not attributable to the Bt trait. There were no detectable differences in the concentration of Bt protein in plant or soil with any of the Bt-expressing varieties. There were significant differences in the abundance of soil nematodes, but this was not related to the Bt trait. Differences in previously published soil nematode studies under Bt maize were smaller than these varietal effects. Soil microbial community structure, as determined by phospholipid fatty acid (PLFA) analysis, was strongly affected by plant growth stage but not by the Bt trait. The experimental addition of purified Cry1Ab protein to soil confirmed that, at ecologically relevant concentrations, there were no measurable effects on microbial community structure.  相似文献   

2.
除草剂在桉树人工林中的应用越来越普遍,但关于除草剂对桉树人工林林下植物和土壤微生物群落的影响知之甚少。通过桉树人工林低剂量高频率(LHF)、中剂量中频率(MMF)、高剂量低频率(HLF)除草剂喷施试验,并与人工除草(MT)为对照,比较分析不同剂量、不同频率除草剂施用对林下植物和土壤微生物群落的影响。结果表明,施用除草剂导致桉树人工林林下植物种类和功能群组成发生显著变化,但并未显著降低林下植物群落物种丰富度和多样性,随除草剂施用频率的降低及恢复时间的增加,物种丰富度及多样性指数呈恢复趋势。除草剂施用也导致土壤养分含量降低。除草剂通过对林下植物群落和土壤养分的负面影响间接影响土壤微生物群落。LHF显著降低藤本植物而显著提高蕨类植物功能群的重要值,从而显著降低了微生物群落、真菌和放线菌的磷脂脂肪酸(PLFA)含量。MMF显著降低木本和藤本植物而显著提高禾草植物功能群的重要值,导致土壤微生物群落和放线菌的PLFA含量显著降低。HLF未显著影响林下植物及土壤微生物群落,但土壤全磷含量显著降低,速效磷含量也大幅下降。施用除草剂显著降低了土壤微生物生物量碳、氮的含量。因此,生产上应减少除草剂的施用,...  相似文献   

3.
The time for 50% loss of napropamide following incorporation into a sandy loam soil in the field varied from about 130 days when applied in spring or early summer to over 200 days when applied later in the year. When left on the soil surface, up to 75% of the applied dose was lost during the first 28 days after application in June or July, whereas losses following application in November, December or January represented less than 25% of the amounts applied. These losses following surface application were closely correlated with the amounts of incoming solar radiation. First-order half-lives for degradation in nine soils incubated moist at 20°C in the laboratory varied from 72 to 150 days. They were positively correlated with the extent of herbicide adsorption by the soils and with their clay content, and negatively correlated with soil pH. Phytotoxicity to wheat and barley in the same soils in glasshouse experiments was inversely related to their organic matter content and to the extent of herbicide adsorption. Wheat was more tolerant of the herbicide than was barley. The results are discussed in terms of possible carryover problems with napropamide in some crop rotations.  相似文献   

4.
The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the effect of soil type was addressed. For this purpose, the bacterial and fungal communities associated with the rhizosphere of GM plants were compared by culture-independent methodologies to the near-isogenic parental line. Two different soils and three stages of plant development in two different periods of the year were included. As evidenced by principal components analysis (PCA) of the PCR-DGGE profiles of evaluated community, clear differences occurred in these rhizosphere communities between soils and the periods of the year that maize was cultivated. However, there were no discernible effects of the GM lines as compared to the parental line. For all microbial communities evaluated, soil type and the period of the year that the maize was cultivated were the main factors that influenced their structures. No differences were observed in the abundances of total bacteria between the rhizospheres of GM and parental plant lines.  相似文献   

5.
Low soil water content (low matric potential) and salinity (low osmotic potential) occur frequently in soils, particularly in arid and semi-arid regions. Although the effect of low matric or low osmotic potential on soil microorganisms have been studied before, this is the first report which compares the effect of the two stresses on microbial activity and community structure. A sand and a sandy loam, differing in pore size distribution, nutrient content and microbial biomass and community structure, were used. For the osmotic stress experiment, salt (NaCl) was added to achieve osmotic potentials from ?0.99 to ?13.13 MPa (sand) and from ?0.21 to 3.41 MPa (sandy loam) after which the soils were pre-incubated at optimal water content for 10d. For the matric stress experiment, soils were also pre-incubated at optimal water content for 10d, after which the water content was adjusted to give matric potentials from ?0.03 and ?1.68 MPa (sand) and from ?0.10 to 1.46 MPa (sandy loam). After amendment with 2% (w/w) pea straw (C/N 26), soil respiration was measured over 14d. Osmotic potential decreased with decreasing soil water content, particularly in the sand. Soil respiration decreased with decreasing water potential (osmotic?+?matric). At a given water potential, respiration decreased to a greater extent in the matric stress experiment than in the osmotic stress experiment. Decreasing osmotic and matric potential reduced microbial biomass (sum of phospholipid fatty acids measured after 14 days) and changed microbial community structure: fungi were less tolerant to decreasing osmotic potential than bacteria, but more tolerant to decreasing water content. It is concluded that low matric potential may be more detrimental than a corresponding low osmotic potential at optimal soil water content. This is likely to be a consequence of the restricted diffusion of substrates and thus a reduced ability of the microbes to synthesise osmolytes to help maintain cell water content. The study also highlighted that it needs to be considered that decreasing soil water content concentrates the salts, hence microorganisms in dry soils are exposed to two stressors.  相似文献   

6.
AIMS: The study aimed to determine whether inoculation with native arbuscular mycorrhizal (AM) fungi could improve survival and growth of seedlings in degraded soils of Morocco. METHODS AND RESULTS: Soil samples were collected from the rhizosphere of Cupressus atlantica trees in the N'Fis valley (Haut Atlas, Morocco). AM spores were extracted from the soil, identified and this mixture of native AM fungi was propagated on maize for 12 weeks on a sterilized soil to enrich the fungal inoculum. Then C. atlantica seedlings were inoculated with and without (control) mycorrhizal maize roots, cultured in glasshouse conditions and further, transplanted into the field. The experiment was a randomized block design with one factor and three replication blocks. The results showed that a high AM fungal diversity was associated with C. atlantica; native AM fungi inoculation was very effective on the growth of C. atlantica seedlings in glasshouse conditions and this plant growth stimulation was maintained for 1 year after outplanting. CONCLUSIONS: Inoculation of C. atlantica with AM fungi increased growth and survival in greenhouse and field. SIGNIFICANCE AND IMPACT OF THE STUDY: The data indicate that use of native species of AM fungi may accelerate reforestation of degraded soils. Further studies have to be performed to determine the persistence of these mycorrhizae for a longer period of plantation and to measure the effects of this microbial inoculation on soil biofunctioning.  相似文献   

7.
Edaphic factors affect the quality of onions (Allium cepa). Two experiments were carried out in the field and glasshouse to investigate the effects of N (field: 0,120 kg ha−1; glasshouse: 0,108 kg ha−1), S (field: 0, 20 kg ha−1; glasshouse: 0, 4.35 kg ha−1) and soil type (clay, sandy loam) on onion quality. A conducting polymer sensor electronic nose (E-nose) was used to classify onion headspace volatiles. Relative changes in the E-nose sensor resistance ratio (%dR/R) were reduced following N and S fertilisation. A 2D Principal Component Analysis (PCA) of the E-nose data sets accounted for c. 100% of the variations in onion headspace volatiles in both experiments. For the field experiment, E-nose data set clusters for headspace volatiles for no N-added onions overlapped (D2= 1.0) irrespective of S treatment. Headspace volatiles of N-fertilised onions for the glasshouse sandy loam also overlapped (D2=1.1) irrespective of S treatment as compared with distinct separations among clusters for the clay soil. N fertilisation significantly (P < 0.01) reduced onion bulb pyruvic acid concentration (flavour) in both experiments. S fertilisation increased pyruvic acid concentration significantly (P < 0.01) in the glasshouse experiment, especially for the clay soil, but had no effect on pyruvic acid concentration in the field. N and S fertilisation significantly (P < 0.01) increased lachrymatory potency (pungency), but reduced total soluble solids (TSS) content in the field experiment. In the glasshouse experiment, N and S had no effect on TSS. TSS content was increased on the clay by 1.2-fold as compared with the sandy loam. Onion tissue N: water-soluble SO42− ratios of between five and eight were associated with greater %dR/R and pyruvic acid concentration values. N did not affect inner bulb tissue microbial load. In contrast, S fertilisation reduced inner bulb tissue microbial load by 80% in the field experiment and between 27% (sandy loam) and 92% (clay) in the glasshouse experiment. Overall, onion bulb quality discriminated by the E-nose responded to N, S and soil type treatments, and reflected their interactions. However, the conventional analytical and sensory measures of onion quality did not correlate with %dR/R.  相似文献   

8.
Rhizosphere microbial communities are important for plant nutrition and plant health. Using the culture-independent method of PCR-DGGE of 16S rDNA for community analyses, we conducted several experiments to investigate the importance of pH, soil type, soil amendment, nutritional status of the plant, plant species and plant age on the structure of the bacterial community in the rhizosphere. At the same time, we assessed the spatial variability of bacterial communities in different root zone locations. Our results showed that the bacterial community structure is influenced by soil pH and type of P fertilization. In a short-term experiment (15–22 days) with cucumber and barley growing in a N deficient or a P deficient soil, the bacterial community structure in the rhizosphere was affected by soil type and fertilization but not by plant species. In a 7.5-week experiment with three plant species (chickpea, canola, Sudan grass) growing in three different soils (a sand, a loam and a clay), the complex interactions between soil and plant effects on the rhizosphere community were apparent. In the sand and the loam, the three plant species had distinct rhizosphere communities while in the clay soil the rhizosphere community structures of canola and Sudan grass were similar and differed from those of chickpea. In all soils, the rhizosphere community structures of the root tip were different from those in the mature root zone. In white lupin, the bacterial community structure of the non-cluster roots differed from those of the cluster roots. As plants matured, different cluster root age classes (young, mature, old) had distinct rhizosphere communities. We conclude that many different factors will contribute to shaping the species composition in the rhizosphere, but that the plant itself exerts a highly selective effect that is at least as great as that of the soil. Root exudate amount and composition are the key drivers for the differences in community structure observed in this study.  相似文献   

9.
From 2000 to 2003 a range of Farm Scale Evaluation (FSE) trials were established in the UK to assess the effect of the release and management of herbicide tolerant (HT) crops on arable weeds and invertebrates. The FSE trials for maize were also used to investigate crop-to-crop gene flow and to develop a statistical model for the prediction of gene flow frequency that can be used to evaluate current separation distance guidelines for GM crops. Seed samples were collected from the non-GM half of 55 trial sites and 1,055 were tested for evidence of gene flow from the GM HT halves using a quantitative PCR assay specific to the HT (pat) gene. Rates of gene flow were found to decrease rapidly with increasing distance from the GM source. Gene flow was detected in 30% of the samples (40 out of 135) at 150 m from the GM source and events of GM to non-GM gene flow were detected at distances up to and including 200 m from the GM source. The quantitative data were subjected to statistical analysis and a two-step model was found to provide the best fit for the data. A dynamic whole field model predicted that a square field (150 m x 150 m in size) of grain maize would require a separation distance of 3 m for the adjacent crop to be below a 0.9% threshold (with <2% probability of exceeding the threshold). The data and models presented here are discussed in the context of necessary separation distances to achieve various possible thresholds for adventitious presence of GM in maize.  相似文献   

10.
11.
《Plant science》1986,46(3):207-211
Previous field observations and greenhouse studies described here involving DPX-F6025, a soybean herbicide, show that soybean cultivars and maize have different sensitivities to the herbicide. The sensitivity of suspension cultures of the soybean (Glycine max (L.) Merr.) cultivars A3127, Earlyana and Old Dominion, and G. canescens F.J. Herm and maize (Zea mays L.) were tested against varying concentrations of DPX-F6025. The response of the cells in vitro correlates well with the whole plant response since maize and Old Dominion are much more sensitive than G. canescens and A3127, and Earlyana is more tolerant yet. The respective I50 values were about 1, 5, 60, 75 and 800 nM. The inhibitory effect of 1 μM DPX-F6025 was at least partially reversed by exogenous valine and/or isoleucine. Levels of free isoleucine, leucine and valine in the cultured cells did not correlate with herbicide sensitivity.  相似文献   

12.
Root research requires high throughput phenotyping methods that provide meaningful information on root depth if the full potential of the genomic revolution is to be translated into strategies that maximise the capture of water deep in soils by crops. A very simple, low cost method of assessing root depth of seedlings using a layer of herbicide (TRIK or diuron) buried 25 or 30 cm deep in soil‐filled boxes of varying size is described that is suitable for screening hundreds or thousands of rice accessions in controlled environment conditions. Variation in cultivar sensitivity to the herbicide when injected into pots was detected but considered small in relation to the variation detected when the herbicide was buried. Using 32 rice cultivars previously characterised for root traits in rhizotron and hydroponic systems, 80% of variation in herbicide score at 35 days was explained by cultivar and herbicide score correlated strongly with rooting depth traits. Using 139 genotypes of the Bala × Azucena mapping population, heritability for herbicide symptoms reached 55% and quantitative trait loci were detected which match those previously reported in this population. In repeated experiments using different soils, the method did not always perform to its maximum potential (in terms of speed of symptom development or discrimination between cultivars). This was not due to degradation or reduced bio‐availability of the herbicide in the soil but is believed to be due to the soil water content and water release characteristics as it relates to plant water use. Therefore, when using this technique, thorough preliminary experiments to determine the best water application regime for the particular combination of soil and environmental conditions are required. The method should be applicable to seedling stage screening of rice and other crops.  相似文献   

13.
Greenhouse bioassays were set up using a small pot test method to determine the intrinsic sensitivity of different plant species to sulcotrione and mesotrione applied in a sandy loam soil. Herbicides were applied over an appropriate concentration range. After a 2-3 week test period, foliage fresh weight was determined. Data were subjected to a non-lineair regression analysis. Using the regression equations, ED50-values (herbicide concentrations that cause 50 percent foliage fresh weight reduction) were calculated for each combination of crop species and herbicide. To determine which replacement crops might be grown in case of failure of a crop treated with one of these herbicides, field persistence experiments were conducted over the 1993-2003 period for sulcotrione and the 1998-2003 period for mesotrione at the Experimental Farm, Biocentre Agri-Vet, Ghent University at Melle. Herbicides were applied in spring (about mid-March) on a bare soil; untreated control strips were included. Replacement crops were sown or planted approximately five weeks after herbicide applications. Visual estimations of crop injury were recorded at several intervals from sowing and fresh matter yield of plant parts was determined. Based on these data, crops were ranked according to their degree of sensitivity to either sulcotrione or mesotrione. Maize is very tolerant to both herbicides, although in some years, temporary injury could be seen in the field experiments. Italian rye-grass and fibre flax are tolerant crops; in field experiments a slight, temporary injury could be noticed in some years. Winter wheat displayed a high degree of tolerance to mesotrione (in both experiment types): however this crop was less tolerant to sulcotrione especially in the bioassay experiment. Based on its ED50-value, black salsify is tolerant to sulcotrione but under field conditions, the selectivity of this herbicide is quite variable; tolerance to mesotrione is moderate. Turnip and witloof chicory are clearly sensitive to mesotrione and sulcotrione whereas sugar beet, red clover and lettuce are extremely sensitive to both herbicides in both experiment types. Bioassays and field experiments provide a detailed and complete information about soil activity and persistence of both herbicides.  相似文献   

14.
In country, non‐target arthropod (NTA) field evaluations are required to comply with the regulatory process for cultivation of genetically modified (GM) maize in Mexico. Two sets of field trials, Experimental Phase and Pilot Phase, were conducted to identify any potential harm of insect‐protected and glyphosate‐tolerant maize (MON‐89Ø34‐3 × MON‐88Ø17‐3 and MON‐89Ø34‐3 × MON‐ØØ6Ø3‐6) and glyphosate‐tolerant maize (MON‐ØØ6Ø3‐6) to local NTAs compared to conventional maize. NTA abundance data were collected at 32 sites, providing high geographic and environmental diversity within maize production areas from four ecological regions (ecoregions) in northern Mexico. The most abundant herbivorous taxa collected included field crickets, corn flea beetles, rootworm beetles, cornsilk flies, aphids, leafhoppers, plant bugs and thrips while the most abundant beneficial taxa captured were soil mites, spiders, predatory ground beetles, rove beetles, springtails (Collembola), predatory earwigs, ladybird beetles, syrphid flies, tachinid flies, minute pirate bugs, parasitic wasps and lacewings. Across the taxa analysed, no statistically significant differences in abundance were detected between GM maize and the conventional maize control for 69 of the 74 comparisons (93.2%) indicating that the single or stacked insect‐protected and herbicide‐tolerant GM traits generally exert no marked adverse effects on the arthropod populations compared with conventional maize. The distribution of taxa observed in this study provides evidence that irrespective of variations in overall biodiversity of a given ecoregion, important herbivore, predatory and parasitic arthropod taxa within the commercial maize agroecosystem are highly similar indicating that relevant data generated in one ecoregion can be transportable for the risk assessment of the same or similar GM crop in another ecoregion.  相似文献   

15.
Garg S  Bahl GS 《Bioresource technology》2008,99(13):5773-5777
Laboratory incubation and green house studies were conducted to compare the P availability of organic manures and P uptake from organic manures by maize. Various organic manures viz. Poultry manure (PM), Farmyard manure (FYM), Green manure (GM) and Crop residue (CR) and graded levels of fertilizer P were applied in Samana sandy loam and Ladhowal silt loam soils and incubated for 7, 15, 30, 60 and 90 days. Samples were analyzed for P availability, P uptake and alkaline phosphatase activity. The overall, phosphatase activity, Paranitrophenyl phosphate (PNP h−1 g−1), in the Ladhowal silt loam soil was higher than in the Samana sandy loam soil. As the level of inorganic P increased, the release of PNP h−1 g−1 soil also increased. Among different organic manures, PM registered the highest enzyme activity followed by FYM, GM and CR. Compared to 7 days incubation a slightly higher increase in PNP was noticed in samples from 90 days incubation in both soils. The differential phosphatase activity in the organic manures was further reflected in dynamic P availability. The highest amount of Olsen extractable P was in PM-treated soil followed by FYM, GM and field pea crop residue. Organic manure addition along with inorganic P, irrespective of the source, increased the Olsen extractable P throughout the incubation period. Total P uptake by maize increased with the increasing level of inorganic P in both soils. The highest uptake was obtained in PM-treated soil and lowest in the CR-amended soil. We conclude that PM more readily supplies P to plants than other organic manure sources.  相似文献   

16.
We hypothesised that plant species composition and richness would affect soil chemical and microbial community properties, and that these in turn would affect soil microbial resistance and resilience to an experimentally imposed drying disturbance. We performed a container experiment that manipulated the composition and species richness of common pasture plant species (Trifolium repens, Lolium perenne, and Plantago lanceolata) by growing them in monoculture, and in all the possible two and three-way combinations, along with an unplanted control soil. Experimental units were harvested at four different times over a 16-month period to determine the effect of plant community development and seasonal changes in temperature and moisture on belowground properties. Results showed that plant species composition influenced soil chemistry, soil microbial community properties and soil microbial resistance and resilience. Soil from planted treatments generally showed reduced soil microbial resistance to drying compared to unplanted control soils. Soils from under T. repens showed a higher resistance and resilience than the soils from under P. lanceolata, and a higher resistance than soils from under L. perenne. We suggest that differences across soils in either resource limitation or soil microbial community structure may be responsible for these results. Plant species richness rarely affected soil microbial community properties or soil microbial resistance and resilience, despite having some significant effects on plant community biomass and soil nitrogen contents in some harvests. The effect that treatments had for most variables differed between harvests, suggesting that results can be altered by the stage of plant community development or by extrinsic environmental factors that varied with harvest timing. These results in combination show that soil microbial resistance and resilience was affected by plant community composition, and the time of measurement, but was largely unrelated to plant species richness.  相似文献   

17.
A glasshouse experiment was conducted to investigate the effect of soil pH on chickpea (Cicer arietinum) tolerance to isoxaflutole applied pre-emergence at 0, 75 (recommended rate) and 300 g a.i. ha−1. For this study, the variables examined were two desi chickpea genotypes (97039-1275 as a tolerant line and 91025-3021 as a sensitive line) and four pH levels (5.1, 6.9, 8.1, and 8.9). The results demonstrated differential tolerances among chickpea genotypes to isoxaflutole at different rates and soil pH levels. Isoxaflutole applied pre-emergence resulted in increased phytotoxicity with increases in soil pH and herbicide rate. Even the most tolerant chickpea genotype was damaged when exposed to higher pH and herbicide rates, as indicated by increased leaf chlorosis and significant reductions in plant height, and shoot and root dry weight. The effects were more severe with the sensitive genotype. The susceptibility of chickpea to this herbicide depends on genotype and soil pH which should be taken into account in breeding new lines, and in the agronomy of chickpea production.  相似文献   

18.
Tropical agroecosystems are subject to degradation processes such as losses in soil carbon, nutrient depletion, and reduced water holding capacity that occur rapidly resulting in a reduction in soil fertility that can be difficult to reverse. In this research, a polyphasic methodology has been used to investigate changes in microbial community structure and function in a series of tropical soils in western Kenya. These soils have different land usage with both wooded and agricultural soils at Kakamega and Ochinga, whereas at Ochinga, Leuro, Teso, and Ugunja a replicated field experiment compared traditional continuous maize cropping against an improved N-fixing fallow system. For all sites, principal component analysis of 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles revealed that soil type was the key determinant of total bacterial community structure, with secondary variation found between wooded and agricultural soils. Similarly, phospholipid fatty acid (PLFA) analysis also separated wooded from agricultural soils, primarily on the basis of higher abundance of monounsaturated fatty acids, anteiso- and iso-branched fatty acids, and methyl-branched fatty acids in the wooded soils. At Kakamega and Ochinga wooded soils had between five 5 and 10-fold higher levels of soil carbon and microbial biomass carbon than agricultural soils from the same location, whereas total enzyme activities were also lower in the agricultural sites. Soils with woody vegetation had a lower percentage of phosphatase activity and higher cellulase and chitinase activities than the agricultural soils. BIOLOG analysis showed woodland soils to have the greatest substrate diversity. Throughout the study the two functional indicators (enzyme activity and BIOLOG), however, showed lower specificity with respect to soil type and land usage than did the compositional indicators (DGGE and PLFA). In the field experiment comparing two types of maize cropping, both the maize yields and total microbial biomass were found to increase with the fallow system. Moreover, 16S rRNA gene and PLFA analyses revealed shifts in the total microbial community in response to the different management regimes, indicating that deliberate management of soils can have considerable impact on microbial community structure and function in tropical soils.  相似文献   

19.
Plant–microbial feedbacks are important drivers of plant community structure and dynamics. These feedbacks are driven by the variable modification of soil microbial communities by different plant species. However, other factors besides plant species can influence soil communities and potentially interact with plant–microbial feedbacks. We tested for plant–microbial feedbacks in two Eucalyptus species, E. globulus and E. obliqua, and the influence of forest fire on these feedbacks. We collected soils from beneath mature trees of both species within native forest stands on the Forestier Peninsula, Tasmania, Australia, that had or had not been burnt by a recent forest fire. These soils were subsequently used to inoculate seedlings of both species in a glasshouse experiment. We hypothesized that (i) eucalypt seedlings would respond differently to inoculation with conspecific versus heterospecific soils (i.e., exhibit plant–microbial feedbacks) and (ii) these feedbacks would be removed by forest fire. For each species, linear mixed effects models tested for differences in seedling survival and biomass in response to inoculation with conspecific versus heterospecific soils that had been collected from either unburnt or burnt stands. Eucalyptus globulus displayed a response consistent with a positive plant–microbial feedback, where seedlings performed better when inoculated with conspecific versus heterospecific soils. However, this effect was only present when seedlings were inoculated with unburnt soils, suggesting that fire removed the positive effect of E. globulus inoculum. These findings show that external environmental factors can interact with plant–microbial feedbacks, with possible implications for plant community structure and dynamics.  相似文献   

20.
Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non‐GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups’ number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non‐GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non‐GM food webs for herbivores were observed. Food webs parameterized based on 2‐year in‐field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non‐target organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号