首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A long-term experiment was conducted to investigate the alleviative effects of silicon (Si) on cadmium (Cd) toxicity in garlic plants grown in pots. Cd and Si were introduced into soil before sowing. Cd was added at a rate of 20 mg kg?1 soil, and Si was applied at two rates: 50 mg SiO2 kg?1 (Si1) and 500 mg SiO2 kg?1 (Si2). There were totally six treatments consisting of CT (control, no added Cd or Si), Si1, Si2, Cd, Cd + Si1, and Cd + Si2. The results showed that Si addition did not affect the growth of garlic plants under control conditions. Under Cd stress, the plant growth and PSII quantum efficiency were inhibited, and they were significantly improved in the presence of added Si. Added Si at Si1 level did not change the soil pH and Cd availability, while it increased Cd accumulation in both shoot and bulb, and improved Cd tolerance. Si added at Si2 level increased the soil pH and decreased Cd availability, and decreased Cd accumulation in different parts of the plant. Added Si had no effect on the activities of soil catalase, urease or invertase regardless of Cd presence. The results suggest that Si could increase Cd tolerance of garlic plants, and the tolerance increase was attributed to not only decreased Cd availability but also in planta detoxification mechanism. There is no evidence indicating that Si-mediated increase of Cd tolerance is related to improved soil microorganism environment as observed in biotic stress conditions.  相似文献   

2.
Is it possible to manipulate root anchorage in young trees?   总被引:1,自引:1,他引:0  
The optimal root system architecture for increased tree anchorage has not yet been determined and in particular, the role of the tap root remains elusive. In Maritime pine (Pinus pinaster Ait.), tap roots may play an important role in anchoring young trees, but in adult trees, their growth is often impeded by the presence of a hard pan layer in the soil and the tap root becomes a minor component of tree anchorage. To understand better the role of the tap root in young trees, we grew cuttings (no tap root present) and seedlings where the tap root had (?) or had not (+) been pruned, in the field for 7 years. The force (F) necessary to deflect the stem sideways was then measured and divided by stem cross-sectional area (CSA), giving a parameter analogous to stress during bending. Root systems were extracted and root architecture and wood mechanical properties (density and longitudinal modulus of elasticity, E L ) determined. In seedlings (?) tap roots, new roots had regenerated where the tap root had been pruned, whereas in cuttings, one or two lateral roots had grown downwards and acted as tap roots. Cuttings had significantly less lateral roots than the other treatments, but those near the soil surface were 14% and 23% thicker than plants (+) and (?) tap roots, respectively. Cuttings were smaller than seedlings, but were not relatively less resistant to stem deflection, probably because the thicker lateral roots compensated for their lower number. Apart from stem volume which was greater in trees (+) tap roots, no significant differences with regard to size or any root system variable were found in plants (?) or (+) tap roots. In all treatments, lateral roots were structurally reinforced through extra growth along the direction of the prevailing wind, which also improved tap root anchorage. Predictors of log F/CSA differed depending on treatment: in trees (?) tap roots, a combination of the predictors stem taper and %volume allocated to deep roots was highly regressed with log F/CSA (R 2 = 0.83), unlike plants (+) tap roots where the combined predictors of lateral root number and root depth were best regressed with log F/CSA (R 2 = 0.80). In cuttings, no clear relationships between log F/CSA and any parameter could be found. Wood density and E L did not differ between roots, but did diminish with increasing distance from the stem in lateral roots. E L was significantly lower in lateral roots from cuttings. Results showed that nursery techniques influence plant development but that the architectural pattern of Maritime pine root systems is stable, developing a sinker root system even when grown from cuttings. Anchorage is affected but the consequences for the long-term are still not known. Numerical modelling may be the only viable method to investigate the function that each root plays in adult tree anchorage.  相似文献   

3.
Cadmium contamination is a critical constraint to plant production in agricultural soils in some regions. Cerium is one of the rare earth elements, it plays a positive role in plant growth with a appropriate content. The present study was conducted to examine the role of cerium nutrition in the amelioration of effects on cadmium toxicity in rice (Oryza sativa L.) seedlings by a hydroponic experiment. Measurements included growth condition, photosynthesis related parameters, chloroplast ultra-structure and antioxidant enzymes content. Our results showed that the growth of rice seedlings was markedly inhibited by cadmium (100 μM), and the inhibition was significantly alleviated by cerium (10 μM). Fresh weight, single seedling height and chlorophyll content of rice plants in cerium treated groups were increased by 24.4, 18.2 and 32.05 % compared to those of plants cultivated in only cadmium-present condition. Additionally, in cadmium treated plants, the addition of cerium significantly increased the value of the maximum quantum yield of primary photochemistry (F v /F m ), indicator of PSII ‘structure and functioning’ (SFI ABS ) and the performance index on absorption basis (PI ABS ), elevated the activity of whole chain electron transport activity, enhanced photophosphorylation and its coupling factor Ca2+-ATPase activities. The result showed that the chloroplasts and thylakoid membrane of the rice seedlings leaves grown in cerium treatment developed better than that in cerium-absent group under cadmium toxicity. Moreover, addition with 10 μM cerium mitigated cadmium stress by inducing leaf enzyme activities for antioxidation like superoxide dismutase, peroxidase and catalase, dramatically depressed superoxide (O 2 ·? ), hydrogen peroxide and malondialdehyde accumulation. Results indicated that alleviation of cadmium toxicity by cerium application is partly related to improved light-use-efficiency, increased antioxidant enzymes, decreased oxidative stress in rice seedlings.  相似文献   

4.
Heavy metal accumulation due to environmental pollution, especially in agricultural ecosystem can cause serious deterioration of crop yield and quality. In present study we assessed the effect of exogenous 28-homobrassinoloid (HBL; 10?8 M) on growth, photosynthesis, indices of chlorophyll a fluorescence and nitrogen metabolism in Solanum lycopersicum seedlings grown under two doses (Cd1: 3 mg kg?1 sand and Cd2: 9 mg kg?1 sand) of cadmium. Accumulation of Cd in root tissues was considerably higher than shoot hence, Cd declined the growth, pigment contents, and photosynthetic O2 yield in its concentration dependent manner. Chlorophyll a fluorescence due to Cd stress was negatively affected as shown by decreased QA ? reoxidation kinetics: φP0, ψ0, φE0 and PI_ABS and increased energy flux parameters: ABS/RC, TR0/RC, ET0/RC and DI0/RC. HBL application under Cd stress improved the photochemistry of photosystem II (PS II) by affecting these parameters positively. Treatment of Cd in test seedlings resulted into significant decrease in nitrate reductase, nitrite reductase, glutamine synthetase and glutamate synthase activities, and induced enhancing effect on ammonium content and glutamate dehydrogenase activity. Exogenous HBL treatment alleviated the negative effect of Cd on growth, photosynthesis, contents of protein, carbohydrate and inorganic nitrogen and nitrogen assimilating enzymes. The data indicate that exogenous HBL protects the test seedlings during the early growth phase against Cd phytotoxicity by regulating Cd accumulation in tissues and two key metabolic processes; photosynthesis and nitrogen metabolism.  相似文献   

5.

Aims

This study examined the effect of elevated CO2 on plant growth, root morphology and Cd accumulation in S. alfredii, and assessed the possibility of using elevated CO2 as fertilizer to enhance phytoremediation efficiency of Cd-contaminated soil by S. alfredii.

Methods

Both soil pot culture and hydroponic experiments were carried out to characterize plant biomass, root morphological parameters, and cadmium uptake in S. alfredii grown under ambient (350 μL L?1) or elevated (800 μL L?1) CO2.

Results

Elevated CO2 prompted the growth of S. alfredii, shoot and root biomass were increased by 24.6–36.7% and 35.0–52.1%, respectively, as compared with plants grown in ambient CO2. After 10 days growth in medium containing 50 μM Cd under elevated CO2, the development of lateral roots and root hairs were stimulated, additionally, root length, surface area, root volume and tip number were increased significantly, especially for the finest diameter roots. The total Cd uptake per pot was significantly greater under elevated CO2 than under ambient CO2. After 60 d growth, Cd phytoextraction efficiency was increased significantly in the elevated CO2 treatment.

Conclusions

Results suggested that the use of elevated CO2 may be a useful way to improve phytoremediation efficiency of Cd-contaminated soil by S. alfredii.  相似文献   

6.
The effects of Cd, in combination with salicylic acid (SA) and sodium nitroprusside (SNP), on ryegrass seedlings were studied. Exposure of plants to 0.1 mM CdCl2 for 2 weeks resulted in toxicity symptoms such as chlorosis and necrotic spots on leaves. The addition of 0.2 mM SA or 0.1 mM SNP slightly alleviated the toxic effects of Cd. After application of both SA and SNP, these symptoms significantly decreased. Treatment with Cd resulted in a decrease of dry weight of roots and shoots, chlorophyll content, net photosynthetic rate (P n), transpiration rate (T r), and the uptake and translocation of mineral elements. In Cd-treated plants, levels of lipoxygenase activity and malondialdehyde, hydrogen peroxide (H2O2), and proline contents significantly increased, whereas the activities of antioxidant enzymes, such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, decreased in both roots and shoots. The results indicated that Cd caused physiological stresses in ryegrass plants. The Cd-stressed plants exposed to SA or SNP, especially to SA + SNP, exhibited improved growth compared with Cd-stressed plants. Application of SA or SNP, especially the combination SA + SNP, considerably reduced root-to-shoot translocation of Cd and increased the activities of antioxidant enzymes in both roots and shoots of Cd-stressed plants. The interaction of SA and SNP increased chlorophyll content, P n and T r in leaves, and the uptake and translocation of mineral elements, and decreased lipid peroxidation and H2O2 and proline accumulation in roots and shoots. These results suggest that SA or SNP, and, in particular, their combination counteracted the negative effects of Cd on ryegrass plants.  相似文献   

7.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

8.
Silicon (Si) could enhance plant tolerance to heavy metals; however, the mechanism of Si-mediated alleviation of cadmium (Cd) toxicity in Poa annua was not clear. In this study, we found that 100 μM Cd significantly inhibited the growth of Poa annua seedlings. Furthermore, Cd enhanced the H2O2 and malondialdehyde content. The activities of superoxide dismutase and ascorbate peroxidase were enhanced, but the catalase and peroxidase activities were reduced by Cd treatment. Cd also altered the activity and expression of glucose-6-phosphate dehydrogenase (G6PDH) in Poa annua roots. Application of Na3PO4, an inhibitor of G6PDH, decreased the activity of G6PDH, the expression of G6PDH, and increased the Cd toxicity, suggesting that G6PDH is involved in the regulation of oxidative stress induced by Cd. Application of 1 mM Si alleviated the inhibition of Cd on the growth of Poa annua seedlings. Si application not only led to reduced oxidative injuries but also decreased the accumulation of Cd in Poa annua seedlings under Cd stress. Furthermore, Si decreased the activity of G6PDH and the expression of G6PDH under Cd stress, which demonstrated that Si attenuates the Cd toxicity in Poa annua probably through decreasing the expression of G6PDH under Cd stress. When G6PDH was inhibited, the alleviation impact of Si on Cd stress was abolished. Taken together, these results demonstrated that the Cd tolerance in Poa annua enhanced by Si is mainly due to the decrease of Cd uptake in roots and lowering the oxidative stress induced by Cd.  相似文献   

9.
The relationship between body dry weight (W) and shell length (L) of blue mussels, Mytilus edulis, can be expressed by the condition index (CI = W/L 3) which varies from population to population and during the year. Here, we examine the influence of CI on the relationships between maximum filtration rate (F, l h?1), W (g), and L (mm) as described by the equations: F W  = aW b and F L  = cL d , respectively. This is done by using available and new experimental laboratory data on M. edulis obtained by members of the same research team using different methods and controlled diets of cultivated algal cells. For all data, it was found that F W  = 6.773W 0.678 and F L  = 0.00135L 2.088 which are very similar to equations for mussels with ‘medium condition’ (CI = 4–6 mg cm?3): F W  = 6.567W 0.681 and F L  = 0.00150L 2.051, with b- and d-values within a few percent of the theoretically expected of 2/3 and 2, respectively. Further, based on the present data, we propose a correction factor expressed by the empirical relation F W /F L  = 0.3562CI2/3 which implies that F W tends to underestimate the actual filtration rate (F L ) when CI < 4.70 and to overestimate the filtration rate when CI > 4.70.  相似文献   

10.
Daily consumption of cadmium (Cd) contaminated foods poses a risk to human health. Cultivar selection is an important method to limit Cd uptake and accumulation, however, analyzing grain Cd concentration is costly and time-consuming. Developing markers for low Cd accumulation will facilitate marker assisted selection (MAS). Inheritance studies using a threshold value of 0.2 mg kg?1 for low and high and an F2:3 population showed that low Cd accumulation in soybean seed is under the control of a major gene (Cda1, proposed name) with the allele for low accumulation being dominant. A recombinant inbred line (RIL) population (F6:8) derived from the cross AC Hime (high Cd accumulation) and Westag-97 (low Cd accumulation) was used to identify the DNA markers linked to Cda gene(s) or quantitative trait loci (QTLs) controlling low Cd accumulation. We screened 171 simple sequence repeat (SSR) primers that showed polymorphism between parents on the 166 RILs. Of these, 40 primers were newly developed from the soybean genomic DNA sequence. Seven SSR markers, SatK138, SatK139, SatK140 (0.5 cM), SatK147, SacK149, SaatK150 and SattK152 (0.3 cM), were linked to Cda1 in soybean seed. All the linked markers were mapped to the same linkage group (LG) K. The closest flanking SSR markers linked to Cda1 were validated using a parallel population (RILs) involving Leo × Westag-97. Linked markers were also validated with diverse soybean genotypes differing in their seed Cd concentration and showed that SSR markers SatK147, SacK149, and SattK152 clearly differentiated the high and low Cd accumulating genotypes tested. To treat Cd uptake as a quantitative trait, QTL analysis using a linkage map constructed with 161 markers identified a major QTL associated with low Cd concentration in the seeds. The QTL was also mapped to the same location as Cda1 on LG-K. This QTL accounted for 57.3% of the phenotypic variation. Potential candidate genes (genes with known or predicted function that could influence the seed Cd concentration) like protein kinase, putative Adagio-like protein, and plasma membrane H+-ATPase were found to be located in the locus of interest. Of the four SSR markers located in the region, SattK152 was localized in the plasma membrane H+-ATPase gene. SSR markers closely linked to Cda1 in seeds of soybean were identified and have potential to be used for MAS to develop low Cd accumulating cultivars in a breeding program.  相似文献   

11.
In vitro grown callus and seedlings of Brassica juncea were treated with equimolar concentrations of cadmium and compared for their respective tolerance to cadmium. Calli cultures were grown on Murashige and Skoog medium supplemented with α 6-benzyl aminopurine (200 µg L?1, naphthalene acetic acid 200 µg L?1) and 2,4-dichloro-phenoxy acetic acid (65 µg L?1) while the seedlings grown on Hoagland's nutrient solution have been carried out. Cellular homeostasis and detoxification to cadmium in B. juncea were studied by analyzing the growth in terms of fresh weight and dry weight, lipid peroxidation, proline accumulation, and antioxidative enzymes (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)). At 200 µM cadmium, callus and seedlings showed 73.61% and 74.76% reduction in tolerance, respectively. A significant increase in malondialdehyde (MDA) content was found in both calli and seedlings; however, the amount of MDA content was more in seedlings. Proline content increased on lower concentration of cadmium (up to 50 µM), and it further decreased (up to 200 µM). But the accumulation of proline was higher in callus cultures. The overall activity of antioxidative enzymes (SOD, CAT, and APX) was found to be higher in callus in comparison to seedlings of B. juncea. Callus and seedlings showed a significant (P?≤?0.5) increase in SOD activity in a concentration-dependent manner up to 50 µM cadmium concentration but decreased further. APX activity increased significantly at low cadmium levels but CAT activity decreased significantly throughout on increasing cadmium concentrations from 5 to 200 µM, respectively. Hence, it was observed that callus of B. juncea was more tolerant in comparison to seedlings exposed to equimolar concentrations of cadmium. Thus, from the present studies, it is concluded that calli were more tolerant toward cadmium-induced oxidative stress. Hence, it is suitable material for the study of cadmium tolerance mechanisms and for the manipulations within them for better understanding of cadmium detoxification strategies in B. juncea.  相似文献   

12.
The membraneless bioelectrochemical reactor (Ml-BER) is useful for dark hydrogen fermentation. The effect of the electrochemical reaction on microorganisms in the Ml-BER was investigated using glucose as the substrate and compared with organisms in a membraneless non-bioelectrochemical reactor (Ml-NBER) and bioelectrochemical reactor (BER) with a proton exchange membrane. The potentials on the working electrode of the Ml-BER and BER with membrane were regulated to ?0.9 V (versus Ag/AgCl) to avoid water electrolysis with a carbon electrode. The Ml-BER showed suppressed methane production (19.8?±?9.1 mg-C·L?1·day?1) and increased hydrogen production (12.6?±?3.1 mg-H·L?1·day?1) at pHout 6.2?±?0.1, and the major intermediate was butyrate (24.9?±?2.4 mM), suggesting efficient hydrogen fermentation. In contrast, the Ml-NBER showed high methane production (239.3?±?17.9 mg-C·L?1·day?1) and low hydrogen production (0.2?±?0.0 mg-H·L?1·day?1) at pHout 6.3?±?0.1. In the cathodic chamber of the BER with membrane, methane production was high (276.3?±?20.4 mg-C·L?1·day?1) (pHout, 7.2?±?0.1). In the anodic chamber of the BER with membrane (anode-BER), gas production was low because of high lactate production (43.6?±?1.7 mM) at pHout 5.0?±?0.1. Methanogenic archaea were not detected in the Ml-BER and anode-BER. However, Methanosarcina sp. and Methanobacterium sp. were found in Ml-NBER. Prokaryotic copy numbers in the Ml-BER and Ml-NBER were similar, as were the bacterial community structures. Thus, the electrochemical reaction in the Ml-BER affected hydrogenotrophic and acetoclastic methanogens, but not the bacterial community.  相似文献   

13.
Cadmium (Cd) is one of the important pollutants of soil and the genotoxicity of Cd-contaminated soil was studied in combination with imidacloprid. The single cell gel electrophoresis or comet assay was used to quantify DNA strand breaks as a measure of DNA damage induced by Cd and imidacloprid contamination in soil. The soil was artificially contaminated by Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg· kg?1 dry soil) or Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg · kg?1 dry soil) and imidacloprid (0.5 mg · kg?1 dry soil). Roots ofVicia faba were exposed to the contaminated soil for 2 h at 25°C and were used in the comet assay. DNA damage was measured as the values of percentage of nuclei with tails, tail length, tail DNA, tail moment (TM), and Olive tail moment (OTM). DNA damages of root tips ofVicia faba increased after Cd treatment and there were dose-related increases in DNA damage measured as these parameters. However, the addition of imidacloprid further increased the DNA damage. These data confirmed the genotoxic effect of Cd to plants, and that the combined pollution with imidacloprid can enhance the genotoxicity of Cd.  相似文献   

14.
Porphyra spp. (currently Porphyra and Pyropia) are major sources of seafood globally. In this study, we investigated the effects of ammonium concentration, water temperature, and thallus stocking density on N-ammonium uptake rate (NUR), tissue nutrients content, N–NH4 + filtration efficiency (NUE: nitrogen uptake efficiency %) of Pyropia yezoensis at a laboratory scale and in a mesoscale to evaluate the potential of this species as a biofilter. Additionally, photosynthetic activity was examined using Diving-PAM fluorometer to evaluate the health status. At a laboratory scale, the NUR and tissue nitrogen (N) content of P. yezoensis increased with increasing NH4 + concentrations in the medium. The NUR at thallus stocking densities of 5 and 10 g fresh weight (FW) L–1 were significantly higher than that at 20 g FW L–1. Effective quantum yield (? F/F m ) and tissue N content was significantly higher at all stocking densities than that at the beginning of experiment. The NUE was over 90 % at 10 and 17 °C, while all thalli cultured at 25 °C died after 5 days. In a mesoscale, the NUE at a thallus stocking density of 10.0 g FW L–1 was significantly higher than that at a stocking density of 5.0 g FW L–1. No differences in the NUE occurred between 10 °C and 17 °C. Photosynthetic activity (?F/Fm and rETRmax) of P. yezoensis at optimal culture condition (10–12 °C and 10 g FW L–1) increased over time through the experiment. This indicates that thallus was healthy during culture and chlorophyll a fluorescence can be as a monitoring tool for evaluating the physiological status of seaweeds in an integrated multi-trophic aquaculture.  相似文献   

15.
Abstract

The physiological responses of peanut seedlings exposed to low (5 µM) or high (200 µM) cadmium (Cd) concentration and the ability of sodium nitroprusside (SNP, a donor of NO) to reverse the harmful effects of Cd on peanut (Arachis hypogaea L.) were studied. Changes in plant growth parameters, chlorophyll content, antioxidant system, nutrient contents and Cd accumulation were investigated. The results showed that SNP and 5 µM Cd improved plant growth and chlorophyll content. Furthermore, antioxidative system was up-regulated, and as a result, the production rate of superoxide radical (O2??) was reduced. Moreover, the absorption of nutrient elements was not impacted, and Cd toxicity was not observed. However, 200 µM Cd had negative effects on the above measured parameters and dramatically increased the accumulation of Cd in all the plant organs. In the 200 µM Cd treatment, addition of 250 µM SNP stimulated plant growth and increased chlorophyll content. It also enhanced the regulation of antioxidative system and reduced the production rate of O2?? and malondialdehyde (MDA) content. Besides, SNP supply enhanced the absorption of nutrient elements and restrained the absorption and transport of Cd.  相似文献   

16.
Suaeda salsa L., a C3 euhalophytic herb, is native to saline soils, demonstrates high resistance to salinity stress. The effect of chilling stress on S. salsa under high salinity, particularly the change in unsaturated fatty acid content within membrane lipids, has not been investigated. After a 12 h chilling treatment (4 °C) performed under low irradiance (100 μmol m?2 s?1), the chlorophyll contents, maximal photochemical efficiency of photosystem II (F v/F m) and actual PSII efficiency (ΦPSII) were determined. These measurements were significantly decreased in S. salsa leaves in the absence of salt treatment yet there were no significant changes with a 200 mM NaCl treatment. Chlorophyll contents, F v/F m and ΦPSII in S. salsa under 200 mM NaCl were higher than those without salt treatment. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of monogalactosyldiacylglycerols, digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols and phosphatidylglycerols (PG) significantly increased following the chilling treatment (4 °C) (with 12 h of low irradiance and 200 mM of NaCl). The DBI of DGDG and PG was decreased in the absence of the salt treatment. These results suggest that in the euhalophyte S. salsa, a 200 mM NaCl treatment increases chilling tolerance under conditions of low irradiance (100 μmol m?2 s?1).  相似文献   

17.
The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in lettuce seedlings were studied. SNP was added into hydroponic systems or sprayed directly on the leaves of plants grown with and without Cd. Excess supply of Cd (100 μM) caused growth inhibition, dramatically increased Cd accumulation in both leaves and roots, and inhibited the absorption of Ca, Mg, Fe and Cu. Excess Cd also decreased activities of superoxide dismutase peroxidase and catalase in leaves and roots, and increased the accumulation of superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Root or foliar applications of exogenous NO alleviated Cd-induced growth suppression, especially root application of 250 μM SNP and foliar addition of 500 μM SNP. Addition of SNP promoted the chlorophyll synthesis suggesting that the photosynthesis was up-regulated. Exogenous NO increased Cd-decreased activities of antioxidant enzymes and markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation. Moreover, the absorption of Ca, Mg, Fe and Cu was increased, indicating that exogenous NO stimulated H+-ATPase activity to promote sequestration or uptake of ions. In addition, exogenous NO also inhibited Cd transfer from roots to shoots, which may indicate that Cd retention in roots induced by NO plays a significant role in Cd tolerance in lettuce seedlings. These data suggest that under Cd stress, exogenous NO improves photosynthesis by increasing chlorophyll synthesis, protects lettuce seedlings against oxidative damage by scavenging ROS, helps to maintain the uptake of nutrient elements, and inhibits Cd transferred to shoots effectively.  相似文献   

18.
The addition of bicarbonate (NaHCO3; 0, 1, or 2 g L?1) to microalgal cultures has been evaluated for two species (Tetraselmis suecica and Nannochloropsis salina) in respect of growth and biochemical composition. In batch cultures, addition of bicarbonate (1 g L?1) resulted in significantly (P?<?0.05) higher final mean cell abundances for both species. No differences in specific growth rates (SGRs) were recorded for T. suecica between treatments; however, increasing bicarbonate addition decreased SGR values in N. salina cultures. Bicarbonate addition (1 g L?1) significantly improved nitrate utilisation from the external media and photosynthetic efficiency (F v /F m ) in both species. For both T. suecica and N. salina, bicarbonate addition significantly increased the cellular concentrations of total pigments (3,432–3,587 and 19–37 fg cell?1, respectively) compared to cultures with no additional bicarbonate (1,727 and 11 fg cell?1, respectively). Moreover, final concentrations of total cellular fatty acids in T. suecica and N. salina cultures supplemented with 2 g L?1 bicarbonate (7.6?±?1.2 and 1.8?±?0.1 pg cell?1, respectively) were significantly higher than those cells supplemented with 0 or 1 g L?1 bicarbonate (3.2–3.5 and 0.9–1.0 pg cell?1, respectively). In nitrate-deplete cultures, bicarbonate addition caused species-specific differences in the rate of cellular lipid production, rates of change in fatty acid composition and final lipid levels. In summary, the addition of sodium bicarbonate is a viable strategy to increase cellular abundance and concentrations of pigments and lipids in some microalgae as well as the rate of lipid accumulation in nitrate-deplete cultures.  相似文献   

19.
The action of 10 and 20 mM Ca against harmful Cd effect on PS2 complex isolated from leaves of Phaseolus coccineus L. cv. Pi?kny Ja? was studied. The changes in fast chlorophyll a fluorescence induction kinetics and protein composition of PS2 complex were the symptoms of Cd toxicity and Ca protection of PS2 complex. Calcium applied at 10 mM concentration prevented F0 reduction caused by the presence of 250–1000 μM Cd in the incubation mixture, but that of (the variable chlorophyll a fluorescence) Fv, Fm, Fv/F0, and Fv/Fm only at 250 μM Cd. Ca concentration doubling in the incubation mixture resulted in complete overcoming the toxicity of 250–1000 μM Cd to Fv and Fm. However, the protection of Fv/F0 and the photochemical efficiency of PS2 (Fv/Fm) from 1000 μM Cd was only partial even at 20 mM Ca. A protective effect of 10 mM Ca on D1, D2 and 17 kDa proteins was found in PS2 complex exposed to 250 μM Cd, and on 43 kDa protein in the complex treated with 500 μM Cd. However, 20 mM Ca counteracted the toxicity of 500 μM Cd to the 43, 47 and 17 kDa proteins, as well as the harmful effect of 1000 μM Cd on 47 and 17 kDa ones.  相似文献   

20.
Photosynthetic gas exchange in the leaves of wheat plants growing in a nutrient solution containing 0 or 2 mM silicon (Si) and inoculated with Pyricularia oryzae was investigated. The blast severity, the gas exchange parameters such as net carbon assimilation rate (A), stomatal conductance to water vapor (g s), internal CO2 concentration (C i) and transpiration rate (E) and the concentration of pigments (chlorophyll a, chlorophyll b and carotenoids) were determined. The blast severity was reduced by 67.66 % on +Si plants compared with the ?Si plants. There were significant increases of 29.3, 17.7 and 45 % for A at 48, 72 and 96 h after inoculation (hai); 26.7 and 49 % for g s at 48 and 96 hai; and 25.2 and 31.4 % for E at 48 and 96 hai, respectively, for +Si inoculated plants when compared with the ?Si inoculated plants. The C i was significantly lower for +Si inoculated plants than for ?Si inoculated plants at 48, 72 and 96 hai. For inoculated plants, the concentrations of chlorophyll a and chlorophyll b were significantly higher for the +Si plants compared with the ?Si plants at 72 and 96 hai. The results of this study clearly demonstrated that the supply of Si to the wheat plants was associated with lower blast severity in parallel with improved gas exchange performance, resulting in higher energy for mounting successful defense strategies against P. oryzae infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号