首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulphur (S) deficiency is recognized as a limiting factor for crop production in many regions in the world. In grasslands, S availability has been shown to alter the biomass production of Trifolium repens and Lolium perenne and their specific interactions. To establish the role of N and S availabilities on the competitive interaction for these minerals by T. repens and L. perenne when grown together, two S rates (0 and 30 kg S ha?1) combined with three N rates (0, 50 and 180 kg N ha?1) were investigated in a cut/regrowth experiment over a period of 4 months under glasshouse conditions. N was applied as 15NH4 15NO3 to determine their actual N fertilizer recovery in the harvested fraction of the shoot. S yields were used to estimate their apparent S fertilizer recovery. At final harvest, N reserves of T. repens stolons were analyzed to estimate their implication in the regrowth process. In monoculture and in both cuts (1 and 2), N benefited both species by increasing their N and S yields. S benefited only T. repens. In mixture, at cut 1, L. perenne behaved as a better competitor than T. repens thanks to N, while at cut 2, T. repens dominated the community thanks to strong positive S effect. N recovery of L. perenne grown in mixture was greatly improved by S supply. For T. repens, S enhanced its ability to fix N2 and improved the accumulation of soluble proteins in its stolons. It is clear that the N:S ratio of soil may affect the functionality of grassland plant communities and their structure. Results suggest that (i) the limitations in the availability of soil S could restrict leguminous species growth in high N soil conditions, and (ii) the modulation of S level could be used as a tool to modify the composition of grassland communities.  相似文献   

2.

Background and aims

We carried out field experiments to investigate if an agricultural grassland mixture comprising shallow- (perennial ryegrass: Lolium perenne L.; white clover: Trifolium repens L.) and deep- (chicory: Cichorium intybus L.; Lucerne: Medicago sativa L.) rooting grassland species has greater herbage yields than a shallow-rooting two-species mixture and pure stands, if deep-rooting grassland species are superior in accessing soil 15N from 1.2 m soil depth compared with shallow-rooting plant species and vice versa, if a mixture of deep- and shallow-rooting plant species has access to greater amounts of soil 15N compared with a shallow-rooting binary mixture, and if leguminous plants affect herbage yield and soil 15N-access.

Methods

15N-enriched ammonium-sulphate was placed at three different soil depths (0.4, 0.8 and 1.2 m) to determine the depth dependent soil 15N-access of pure stands, two-species and four-species grassland communities.

Results

Herbage yield and soil 15N-access of the mixture including deep- and shallow-rooting grassland species were generally greater than the pure stands and the two-species mixture, except for herbage yield in pure stand lucerne. This positive plant diversity effect could not be explained by complementary soil 15N-access of the different plant species from 0.4, 0.8 and 1.2 m soil depths, even though deep-rooting chicory acquired relatively large amounts of deep soil 15N and shallow-rooting perennial ryegrass when grown in a mixture relatively large amounts of shallow soil 15N. Legumes fixed large amounts of N2, added and spared N for non-leguminous plants, which especially stimulated the growth of perennial ryegrass.

Conclusions

Our study showed that increased plant diversity in agricultural grasslands can have positive effects on the environment (improved N use may lead to reduced N leaching) and agricultural production (increased herbage yield). A complementary effect between legumes and non-leguminous plants and increasing plant diversity had a greater positive impact on herbage yield compared with complementary vertical soil 15N-access.  相似文献   

3.
Human management practices and large detritivores such as earthworms incorporate plant litter into the soil, thereby forming a heterogeneous soil environment from which plant roots extract nutrients. In a greenhouse experiment we investigated effects of earthworms and spatial distribution of 15N-labelled grass litter on plants of different functional groups [Lolium perenne (grass), Plantago lanceolata (forb), Trifolium repens (legume)]. Earthworms enhanced shoot and root growth in L. perenne and P. lanceolata and N uptake from organic litter and soil in all plant species. Litter concentrated in a patch (compared with litter mixed homogeneously into the soil) increased shoot biomass and 15N uptake from the litter in L. perenne and enhanced root proliferation in P. lanceolata when earthworms were present. Growth of clover (T. repens) was rather independent of the presence of earthworms and organic litter distribution: nevertheless, clover took up more nitrogen in the presence of earthworms and exploited more 15N from the added litter than the other plant species. The magnitude of the effects of earthworms and organic litter distribution differed between the plant species, indicating different responses of plants with contrasting root morphology. Aphid (Myzus persicae) reproduction was reduced on P. lanceolata in the presence of earthworms. We suggest that earthworm activity may indirectly alter plant chemistry and hence defence mechanisms against herbivores.  相似文献   

4.
Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.) and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8?g?m-2) compared with red clover (2.2?g?m-2) and lucerne (1.1?g?m-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40?kg?N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland.  相似文献   

5.
Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a 13C-CO2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived 13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts) of the recently assimilated 13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of 13C enrichment in 6-species mixtures, while 13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of 13C in the respired CO2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of 13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased community level productivity in grassland systems.  相似文献   

6.
Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered.  相似文献   

7.
Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N‐rich grasslands exposed to long‐term elevated CO2. This study examined whether N‐fertilized grasslands exposed to elevated CO2 sequestered additional C. For 10 years, Lolium perenne, Trifolium repens, and the mixture of L. perenne/T. repens grasslands were exposed to ambient and elevated CO2 concentrations (35 and 60 Pa pCO2). The applied CO2 was depleted in δ13C and the grasslands received low (140 kg ha?1) and high (560 kg ha?1) rates of 15N‐labeled fertilizer. Annually collected soil samples from the top 10 cm of the grassland soils allowed us to follow the sequestration of new C in the surface soil layer. For the first time, we were able to collect dual‐labeled soil samples to a depth of 75 cm after 10 years of elevated CO2 and determine the total amount of new soil C and N sequestered in the whole soil profile. Elevated CO2, N‐fertilization rate, and species had no significant effect on total soil C. On average 9.4 Mg new C ha?1 was sequestered, which corresponds to 26.5% of the total C. The mean residence time of the C present in the 0–10 cm soil depth was calculated at 4.6±1.5 and 3.1±1.1 years for L. perenne and T. repens soil, respectively. After 10 years, total soil N and C in the 0–75 cm soil depth was unaffected by CO2 concentration, N‐fertilization rate and plant species. The total amount of 15N‐fertilizer sequestered in the 0–75 cm soil depth was also unaffected by CO2 concentration, but significantly more 15N was sequestered in the L. perenne compared with the T. repens swards: 620 vs. 452 kg ha?1 at the high rate and 234 vs. 133 kg ha?1 at the low rate of N fertilization. Intermediate values of 15N recovery were found in the mixture. The fertilizer derived N amounted to 2.8% of total N for the low rate and increased to 8.6% for the high rate of N application. On average, 13.9% of the applied 15N‐fertilizer was recovered in the 0–75 cm soil depth in soil organic matter in the L. perenne sward, whereas 8.8% was recovered under the T. repens swards, indicating that the N2‐fixing T. repens system was less effective in sequestering applied N than the non‐N2‐fixing L. perenne system. Prolonged elevated CO2 did not lead to an increase in whole soil profile C and N in these fertilized pastures. The potential use of fertilized and regular cut pastures as a net soil C sink under long‐term elevated CO2 appears to be limited and will likely not significantly contribute to the mitigation of anthropogenic C emissions.  相似文献   

8.
Plants compete for limited resources. Although nutrient availability for plants is affected by resource distribution and soil organisms, surprisingly few studies investigate their combined effects on plant growth and competition. Effects of endogeic earthworms (Aporrectodea jassyensis), root-knot nematodes (Meloidogyne incognita) and the spatial distribution of 15N labelled grass litter on the competition between a grass (Lolium perenne), a forb (Plantago lanceolata) and a legume (Trifolium repens) were investigated in the greenhouse. Earthworms promoted N uptake and growth of L. perenne. Contrastingly, shoot biomass and N uptake of T. repens decreased in the presence of earthworms. P. lanceolata was not affected by the earthworms. We suggest that earthworms enhanced the competitive ability of L. perenne against T. repens. Nematodes increased the proportion of litter N in each of the plant species. Litter distribution (homogeneous vs. patch) did not affect the biomass of any plant species. However, P. lanceolata took up more 15N, when the litter was homogeneously mixed into the soil. The results suggest that endogeic earthworms may affect plant competition by promoting individual plant species. More studies including decomposers are necessary to understand their role in determining plant community structure.  相似文献   

9.
According to the singular hypothesis of plant diversity, different plant species are expected to make unique contributions to ecosystem functioning. Hence, individual species would support distinct microbial communities. It was hypothesized that microbial community dynamics in the respective rhizospheres of, two floristically divergent species, Agrostis capillaris and Prunella vulgaris that were dominant in a temperate, upland grassland in northern Greece, would support distinct microbial communities, in agreement to the singular hypothesis. Phospholipid lipid fatty acid (PLFA) profiles of the rhizosphere soil microbial community were obtained from the grassland which had been subjected to factorial nitrogen (N) and phosphorus (P) fertilization over five plant growth seasons. The soil cores analyzed were centered on stands of the two co-occurring target plant species, sampled from five blocks in all four factorial N and P fertilization combinations. Distinct PLFA clustering patterns following principle component analysis of PLFA concentrations revealed that, in the absence of P fertilization, soils under the two plant species supported divergent microbial communities. In the P fertilized plots, however, no such distinction could be observed. Results reveal that nutrient fertilization may mask the ability of plant species to shape their own rhizosphere microbial community.  相似文献   

10.
Background and AimsKnowledge of plant resource acquisition strategies is crucial for understanding the mechanisms mediating the responses of ecosystems to external nitrogen (N) input. However, few studies have considered the joint effects of above-ground (light) and below-ground (nutrient) resource acquisition strategies in regulating plant species responses to N enrichment. Here, we quantified the effects of light and non-N nutrient acquisition capacities on species relative abundance in the case of extra N input.MethodsBased on an N-manipulation experiment in a Tibetan alpine steppe, we determined the responses of species relative abundances and light and nutrient acquisition capacities to N enrichment for two species with different resource acquisition strategies (the taller Stipa purpurea, which is colonized by arbuscular mycorrhizal fungi, and the shorter Carex stenophylloides, which has cluster roots). Structural equation models were developed to explore the relative effects of light and nutrient acquisition on species relative abundance along the N addition gradient.Key ResultsWe found that the relative abundance of taller S. purpurea increased with the improved light acquisition along the N addition gradient. In contrast, the shorter C. stenophylloides, with cluster roots, excelled in acquiring phosphorus (P) so as to elevate its leaf P concentration under N enrichment by producing large amounts of carboxylate exudates that mobilized moderately labile and recalcitrant soil P forms. The increased leaf P concentration of C. stenophylloides enhanced its light use efficiency and promoted its relative abundance even in the shade of taller competitors.ConclusionsOur findings highlight that the combined effects of above-ground (light) and below-ground (nutrient) resources rather than light alone (the prevailing perspective) determine the responses of grassland community structure to N enrichment.  相似文献   

11.

Background and aims

To test the hypothesis that dominant plant species could acquire different nitrogen (N) forms over a spatial scale and they also have the ability to compete for available N with microbes.

Methods

A short-term 15N labeling experiment was conducted in the temperate grassland ecosystem of North China in July of 2013. Three N forms (NO3 ? , NH4 + and glycine) labeled with 15N were injected into the two soil depths (0–5 and 5–15 cm) surrounding each plant to explore N acquisition by plants and microbes. Three dominant plant species (Artemisia frigida, Cleistogenes squarrosa and Artemisia capillaris) were investigated.

Results

Two hours after 15N labeling, all three dominant plant species absorbed both organic and inorganic N, but different patterns were observed at two soil depths. Uptake of NO3 ? was significantly higher at 0–5 cm than at 5–15 cm soil depth among all the dominant plant species. 15N recovery by microbes was significantly higher than plants. However, 15N recovery by plants showed different patterns over soil depths.

Conclusions

Dominant plant species in the temperate grassland have different patterns in acquisition of N added to soil in organic form and absorption of inorganic N, and microbes were more effectively than plants at competing for N in a short-term period.
  相似文献   

12.
Alien invasive plants threaten biodiversity, productivity and ecosystem functioning throughout the world. We examined the effect of Fallopia japonica on two native grassland species (Trifolium repens, Lolium perenne). We hypothesized that its negative effects on the native species are dependent on three mechanisms: (i) allelochemicals released and accumulated in soil with a history of invasion, (ii) altered soil biota and (iii) direct resource competition. We measured the response of the native species as the difference in their functional traits when grown under the three conditions. Our results demonstrate that neither allelochemicals nor soil biota from soil with history of F. japonica invasion had measurable effects on either species. Competition with the invader strongly reduced height, biomass and specific leaf area (SLA) of T. repens, while it had a lower effect on L. perenne. Furthermore, our results reveal that F. japonica took advantage of a positive plant–soil and plant–plant interaction. The results show that the prominent mechanism underpinning the invasion success of F. japonica in the grassland was the direct resource competition. This prominent role is also confirmed by the significant interactions between competition, allelochemicals and soil biota from soils with history of invasion of F. japonica on SLA of the native species.  相似文献   

13.
Trifolium repens L. and Lolium perenne L. were grown in monocultures and bi-species mixture in a Free Air Carbon Dioxide Enrichment (FACE) experiment at elevated (60 Pa) and ambient (35 Pa) CO2 partial pressure (pCO2) for three years. The effects of defoliation frequencies (4 and 7 cuts in 1993; 4 and 8 cuts in 1994/95) and nitrogen fertilization (10 and 42 g m–2 y–1 N in 1993; 14 and 56 g m–2 y–1 N in 1994/95) on the growth response to pCO2 were investigated. There were significant interspecific differences in the CO2 responses during the first two years, while in the third growing season, these interspecific differences disappeared. Yield of T. repens in monocultures increased in the first two years by 20% when grown at elevated pCO2. This CO2 response was independent of defoliation frequency and nitrogen fertilization. In the third year, the CO2 response of T. repens declined to 11%. In contrast, yield of L. perenne monocultures increased by only 7% on average over three years at elevated pCO2. The yield response of L. perenne to CO2 changed according to defoliation frequency and nitrogen fertilization, mainly in the second and third year. The ratio of root/yield of L. perenne increased under elevated pCO2, low N fertilizer rate, and frequent defoliation, but it remained unchanged in T. repens. We suggest that the more abundant root growth of L. perenne was related to increased N limitation under elevated pCO2. The consequence of these interspecific differences in the CO2 response was a higher proportion of T. repens in the mixed swards at elevated pCO2. This was evident in all combinations of defoliation and nitrogen treatments. However, the proportion of the species was more strongly affected by N fertilization and defoliation frequency than by elevated pCO2. Based on these results, we conclude that the species proportion in managed grassland may change as the CO2 concentration increases. However, an adapted management could, at least partially, counteract such CO2 induced changes in the proportion of the species. Since the availability of mineral N in the soil may be important for the species’ responses to elevated pCO2, more long-term studies, particularly of processes in the soil, are required to predict the entire ecosystem response.  相似文献   

14.
Preferential uptake of soil nitrogen forms by grassland plant species   总被引:14,自引:0,他引:14  
Weigelt A  Bol R  Bardgett RD 《Oecologia》2005,142(4):627-635
In this study, we assessed whether a range of temperate grassland species showed preferential uptake for different chemical forms of N, including inorganic N and a range of amino acids that commonly occur in temperate grassland soil. Preferential uptake of dual-labelled (13C and 15N) glycine, serine, arginine and phenylalanine, as compared to inorganic N, was tested using plants growing in pots with natural field soil. We selected five grass species representing a gradient from fertilised, productive pastures to extensive, low productivity pastures (Lolium perenne, Holcus lanatus, Anthoxanthum odoratum, Deschampsia flexuosa, and Nardus stricta). Our data show that all grass species were able to take up directly a diversity of soil amino acids of varying complexity. Moreover, we present evidence of marked inter-species differences in preferential use of chemical forms of N of varying complexity. L. perenne was relatively more effective at using inorganic N and glycine compared to the most complex amino acid phenylalanine, whereas N. stricta showed a significant preference for serine over inorganic N. Total plant N acquisition, measured as root and shoot concentration of labelled compounds, also revealed pronounced inter-species differences which were related to plant growth rate: plants with higher biomass production were found to take up more inorganic N. Our findings indicate that species-specific differences in direct uptake of different N forms combined with total N acquisition could explain changes in competitive dominance of grass species in grasslands of differing fertility.  相似文献   

15.
A method was used for applying a uniform mechanical impedanceto plant roots using sand packed at different bulk densitieswith depth within each growth cylinder. In a growth experiment,replicate cylinders were packed with sand to give the followingmechanical impedances: 0.25 MPa penetration resistance (negligibleimpedance), 1.40 MPa (moderate impedance) and 2.30 MPa (severeimpedance). Seedlings of Lolium perenne L., Trifolium repensL. and Agrostis capillaris were grown for 23 d in each impedancetreatment and effects on both roots and shoots were studied.Severe mechanical impedance affected both root and shoot growthrates for all three species resulting in smaller leaves andshorter roots. For the grasses, the root-to-shoot ratio at harvestwas the same for all the treatments, but a delay in the initiationof both shoots and roots was observed in the severe mechanicalimpedance treatment. The results are discussed in relation tothe possibility that roots penetrating the impeding treatmentsmay have caused signalling that kept shoot and root growth insynchrony. Differences observed in the response to mechanicalimpedance of T. repens compared to the other two species maybe a function of differences in the physiology between mono-and dicotyledonous species. Key words: Mechanical impedance, Lolium perenne, Trifolium repens, roots, shoots  相似文献   

16.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

17.
Experimental findings indicate that, in terrestrial ecosystems, nitrogen cycling changes under elevated partial pressure of atmospheric CO2 (pCO2). It was suggested that the concentration of N in plant litter as well as the amount of litter are responsible for these changes. However, for grassland ecosystems, there have been no relevant data available to support this hypothesis. Data from five years of the Swiss FACE experiment show that, under fertile soil conditions in a binary plant community consisting of Lolium perenne L. and Trifolium repens L., the concentration of litter N does not change under elevated atmospheric pCO2; this applies to harvest losses, stubble, stolons and roots as the sources of litter. This is in strong contrast to the CO2 response of L. perenne swards without associated legumes; in this case the above-ground concentration of biomass N decreased substantially. Increased symbiotic N2 fixation in T. repens nodules and a greater proportion of the N-rich T. repens in the community are regarded as the main mechanisms that buffer the increased C introduction into the ecosystem under elevated atmospheric pCO2. Our data also suggest that elevated atmospheric pCO2 results in greater amounts of litter, mainly due to increased root biomass production. This study indicates that, in a fertile grassland ecosystem with legumes, the concentration of N in plant litter is not affected by elevated atmospheric pCO2 and, thus, cannot explain CO2-induced changes in the cycling of N. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   

19.
The impact of elevated CO2 and N‐fertilization on soil C‐cycling in Lolium perenne and Trifolium repens pastures were investigated under Free Air Carbon dioxide Enrichment (FACE) conditions. For six years, swards were exposed to ambient or elevated CO2 (35 and 60 Pa pCO2) and received a low and high rate of N fertilizer. The CO2 added in the FACE plots was depleted in 13C compared to ambient (Δ? 40‰) thus the C inputs could be quantified. On average, 57% of the C associated with the sand fraction of the soil was ‘new’ C. Smaller proportions of the C associated with the silt (18%) and clay fractions (14%) were derived from FACE. Only a small fraction of the total C pool below 10 cm depth was sequestered during the FACE experiment. The annual net input of C in the FACE soil (0–10 cm) was estimated at 4.6 ± 2.2 and 6.3 ± 3.6 (95% confidence interval) Mg ha? 1 for T. repens and L. perenne, respectively. The maximum amount of labile C in the T. repens sward was estimated at 8.3 ± 1.6 Mg ha? 1 and 7.1 ± 1.0 Mg ha? 1 in the L. perenne sward. Mean residence time (MRT) for newly sequestered soil C was estimated at 1.8 years in the T. repens plots and 1.1 years for L. perenne. An average of 18% of total soil C in the 0–10 cm depth in the T. repens sward and 24% in the L. perenne sward was derived from FACE after 6 years exposure. The majority of the change in soil δ13C occurred in the first three years of the experiment. No treatment effects on total soil C were detected. The fraction of FACE‐derived C in the L. perenne sward was larger than in the T. repens sward. This suggests a priming effect in the L. perenne sward which led to increased losses of the old C. Although the rate of C cycling was affected by species and elevated CO2, the soil in this intensively managed grassland ecosystem did not become a sink for additional new C.  相似文献   

20.

Background and Aims

Recent biodiversity research has focused on ecosystem processes, but less is known about responses of populations of individual plant species to changing community diversity and implications of genetic variation within species. To address these issues, effects of plant community diversity on the performance of different cultivars of Lolium perenne were analysed.

Methods

Populations of 15 genetic cultivars of Lolium perenne were established in experimental grasslands varying in richness of species (from 1 to 60) and functional groups (from 1 to 4). Population sizes, mean size of individual plants, biomass of individual shoots and seed production were measured in the first and second growing season after establishment.

Key Results

Population sizes of all cultivars decreased with increasing community species richness. Plant individuals formed fewer shoots with a lower shoot mass in more species-rich plant communities. A large proportion of variation in plant size and relative population growth was attributable to effects of community species and functional group richness, but the inclusion of cultivar identity explained additional 4–7 % of variation. Cultivar identity explained most variation (28–51 %) at the shoot level (biomass of individual tillers and reproductive shoots, seed production, heading stage). Coefficients of variation of the measured variables across plant communities were larger in cultivars with a lower average performance, indicating that this variation was predominantly due to passive growth reductions and not a consequence of larger adaptive plastic responses. No single cultivar performed best in all communities.

Conclusions

The decreasing performance of Lolium perenne in plant communities of increasing species richness suggests a regulation of competitive interactions by species diversity. Genetic variation within species provides a base for larger phenotypic variation and may affect competitive ability. However, heterogeneous biotic environments (= plant communities of different species composition) are important for the maintenance of intra-specific genetic variation.Key words: Biodiversity, competition, genetic variation, growth reduction, Lolium perenne, phenotypic plasticity, species richness  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号