首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two non-CO2 greenhouse gases (GHGs) nitrous oxide (N2O) and methane (CH4) comprise 54.8% of total New Zealand emissions. Nitrous oxide is mainly generated from mineral N originating from animal dung and urine, applied fertiliser N, biologically fixed N2, and mineralisation of soil organic N. Even though about 96% of the anthropogenic CH4 emitted in New Zealand is from ruminant animals (methanogenesis), methane uptake by aerobic soils (methanotrophy) can significantly contribute to the removal of CH4 from the atmpsphere, as the global estimates confirm. Both the net uptake of CH4 by soils and N2O emissions from soils are strongly influenced by changes in land use and land management. Quantitative information on the fluxes of these two non-CO2 GHGs is required for a range of land-use and land-management ecosystems to determine their contribution to the national emissions inventory, and for assessing the potential of mitigation options. Here we report soil N2O fluxes and CH4 uptake for a range of land-use and land-management systems collated from published and unpublished New Zealand studies. Nitrous oxide emissions are highest in dairy-grazed pastures (10–12 kg N2O–N ha?1 year? 1), intermediate in sheep-grazed pastures, (4–6 kg N2O–N ha?1 year?1), and lowest in forest, shrubland and ungrazed pasture soils (1–2 kg N2O–N ha?1 year?1). N deposited in the form of animal urine and dung, and N applied as fertiliser, are the principal sources of N2O production. Generally, N2O emissions from grazed pasture soils are high when the soil water-filled pore-space is above field capacity, and net CH4 uptake is low or absent. Although nitrification inhibitors have shown some promise in reducing N2O emissions from grazed pasture systems, their efficacy as an integral part of farm management has yet to be tested. Methane uptake was highest for a New Zealand Beech forest soil (10–11 kg CH4 ha?1 year?1), intermediate in some pine forest soils (4–6 kg CH4 ha?1 year?1), and lowest in most pasture (<1 kg CH4 ha?1 year?1) and cropped soils (1.5 kg CH4 ha?1 year?1). Afforestation /reforestation of pastures results in increases in soil CH4 uptake, largely as a result of increases in soil aeration status and changes in the population and activities of methanotrophs. Soil CH4 uptake is also seasonally dependent, being about two to three times higher in a dry summer and autumn than in a wet winter. There are no practical ways yet available to reduce CH4 emissions from agricultural systems. The mitigation options to reduce gaseous emissions are discussed and future research needs identified.  相似文献   

2.
Nitrous oxide (N2O) emissions to the atmosphere from grazed pasture can be high, especially from urine-affected areas. When pastoral soils are damaged by animal treading, N2O emissions may increase. In New Zealand, autumn-sown winter forage crops are often grown as a break-crop prior to re-sowing pasture. When these crops are grazed in situ over winter (as is common in New Zealand) there is high risk of soil damage from animal treading as soil moisture contents are often high at this time of year. Moreover, the risk of soil damage during grazing increases when intensive tillage practices are used to establish these forage crops. Consequently, winter grazed forage crops may be an important source of N2O emissions from intensive pastoral farming systems, and these emissions may be affected by the type of tillage used to establish them. We conducted a replicated field experiment to measure the effects of simulated cattle grazing (mowing followed by simulated treading and the application of synthetic urine) at three soil moisture contents (< field capacity, field capacity and > field capacity) on measured N2O emissions from soil under an autumn (March) sown winter forage crop (triticale) established with three levels of tillage intensity: (a) intensive, IT, (b) minimum, MT, or (c) no tillage, NT. In all treatments, bulk density in the top 7.5 cm of the soil was unaffected by treading when simulated grazing occurred at < field capacity. It was increased in the IT plots by 13 and 15% when treading occurred at field capacity and > field capacity, and by 10% in the MT plots trodden at > field capacity. Treading did not significantly increase the bulk density in the NT plots. Emissions of N2O from the tillage treatments decreased in the order IT > MT > NT. N2O emissions were greatest from plots that were trodden at > field capacity and least from plots trodden at < field capacity. Simulated treading and urine application increased N2O emission 2 to 6-fold from plots that had no treading but did receive urine. Urine-amended plots had much greater emissions than plots that had no urine. Overall, the greatest emission of 14.4 kg N ha?1 over 90 days (1.8% of the total urine N applied) was measured from urine-amended IT plots that were trodden at > field capacity. The N2O emission from urine-amended NT plots that were trodden at < field capacity was 2.0 kg ha?1 over 90 days (0.25% of the total urine N applied). Decreasing the intensity of tillage used to establish crops and restricting grazing when soils are wet are two of the most effective ways to minimise the risk of high N2O emissions from grazed winter forage crops.  相似文献   

3.
Temperate pastures are often managed with P fertilizers and N2-fixing legumes to maintain and increase pasture productivity which may lead to greater nitrous oxide (N2O) emissions and reduced methane (CH4) uptake. However, the diel and inter-daily variation in N2O and CH4 flux in pastures is poorly understood, especially in relation to key environmental drivers. We investigated the effect of pasture productivity, rainfall, and changing soil moisture and temperature upon short-term soil N2O and CH4 flux dynamics during spring in sheep grazed pasture systems in southeastern Australia. N2O and CH4 flux was measured continuously in a High P (23 kg P ha?1 yr?1) and No P pasture treatment and in a sheep camp area in a Low P (4 kg P ha?1 yr?1) pasture for a four week period in spring 2005 using an automated trace gas system. Although pasture productivity was three-fold greater in the High P than No P treatment, mean CH4 uptake was similar (?6.3?±?SE 0.3 to ?8.6?±?0.4 μg C m?2 hr?1) as were mean N2O emissions (6.5 to 7.9?±?0.8 μg N m?2 hr?1), although N2O flux in the No P pasture did not respond to changing soil water conditions. N2O emissions were greatest in the Low P sheep camp (12.4 μg?±?1.1 N m?2 hr?1) where there were also net CH4 emissions of 5.2?±?0.5 μg C m?2 hr?1. There were significant, but weak, relationships between soil water and N2O emissions, but not between soil water and CH4 flux. The diel temperature cycle strongly influenced CH4 and N2O emissions, but this was often masked by the confounding covariate effects of changing soil water content. There were no consistently significant differences in soil mineral N or gross N transformation rates, however, measurements of substrate induced respiration (SIR) indicated that soil microbial processes in the highly productive pasture are more N limited than P limited after >20 years of P fertilizer addition. Increased productivity, through P fertilizer and legume management, did not significantly increase N2O emissions, or reduce CH4 uptake, during this 4 week measurement period, but the lack of an N2O response to rainfall in the No P pasture suggests this may be evident over a longer measurement period. This study also suggests that small compacted and nutrient enriched areas of grazed pastures may contribute greatly to the overall N2O and CH4 trace gas balance.  相似文献   

4.
Temperate pasture species constitute a source of protein for dairy cattle. On the other hand, from an environmental perspective, their high N content can increase N excretion and nitrogenous gas emissions by livestock. This work explores the effect of energy supplementation on N use efficiency (NUE) and nitrogenous gas emissions from the excreta of dairy cows grazing a pasture of oat and ryegrass. The study was divided into two experiments: an evaluation of NUE in grazing dairy cows, and an evaluation of N-NH3 and N-N2O volatilizations from dairy cow excreta. In the first experiment, 12 lactating Holstein × Jersey F1 cows were allocated to a double 3 × 3 Latin square (three experimental periods of 17 days each) and subjected to three treatments: cows without supplementation (WS), cows supplemented at 4.2 kg DM of corn silage (CS) per day, and cows supplemented at 3.6 kg DM of ground corn (GC) per day. In the second experiment, samples of excreta were collected from the cows distributed among the treatments. Aliquots of dung and urine of each treatment plus one blank (control – no excreta) were allotted to a randomized block design to evaluate N-NH3 and N-N2O volatilization. Measurements were performed until day 25 for N-NH3 and until day 94 for N-N2O. Dietary N content in the supplemented cows was reduced by 20% (P < 0.001) compared with WS cows, regardless of the supplement. Corn silage cows had lower N intake (P < 0.001) than WS and GC cows (366 v. 426 g/day, respectively). Ground corn supplementation allowed cows to partition more N towards milk protein compared with the average milk protein of WS cows or those supplemented with corn silage (117 v. 108 g/day, respectively; P < 0.01). Thus, even though they were in different forms, both supplements were able to increase (P < 0.01) NUE from 27% in WS cows to 32% in supplemented cows. Supplementation was also effective in reducing N excretion (761 v. 694 g/kg of Nintake; P < 0.001), N-NH3 emission (478 v. 374 g/kg of Nmilk; P < 0.01) and N-N2O emission (11 v. 8 g/kg of Nmilk; P < 0.001). Corn silage and ground corn can be strategically used as feed supplements to improve NUE, and they have the potential to mitigate N-NH3 and N-N2O emissions from the excreta of dairy cows grazing high-protein pastures.  相似文献   

5.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

6.
Grazing ruminants urinate and deposit N onto pastoral soils at rates up to 1,000 kg ha?1, with most of this deposited N present as urea. In urine patches, nitrous oxide (N2O) emissions can increase markedly. Soil derived CO2 fluxes can also increase due to priming effects.While N2O fluxes are affected by temperature, no studies have examined the interaction of pasture plants, urine and temperature on N2O fluxes and the associated CO2 fluxes. We postulated the response of N2O emissions to bovine urine application would be affected by plants and temperature. Dairy cattle urine was collected, labelled with 15N, and applied at 590 kg N ha?1 to a sub-tropical soil,with and without pasture plants at 11°, 19°, and 23°C. Over the experimental period (28 days), 0.2% (11°C with plants) to 2.2% (23°C with plants) of the applied N was emitted as N2O. At 11°C, plants had no effect on cumulative N2O-N fluxes, whereas at 23°C, the presence of plants significantly increased the flux, suggesting plant-derived C supply affected the N2O producing microbes. In contrast, a significant urine application effect on the cumulative CO2 flux was not affected by varying temperature from 11?C23°C or by growing plants in the soil. This study has shown that plants and their responses to temperature affect N2O emissions from ruminant urine deposition. The results have significant implications for forecasting and understanding the effect of elevated soil temperatures on N2O emissions and CO2 fluxes from grazed pasture systems.  相似文献   

7.
The current Intergovernmental Panel on Climate Change (IPCC) default methodology (tier 1) for calculating nitrous oxide (N2O) emissions from nitrogen applied to agricultural soils takes no account of either crop type or climatic conditions. As a result, the methodology omits factors that are crucial in determining current emissions, and has no mechanism to assess the potential impact of future climate and land‐use change. Scotland is used as a case study to illustrate the development of a new methodology, which retains the simple structure of the IPCC tier 1 methodology, but incorporates crop‐ and climate‐dependent emission factors (EFs). It also includes a factor to account for the effect of soil compaction because of trampling by grazing animals. These factors are based on recent field studies in Scotland and elsewhere in the UK. Under current conditions, the new methodology produces significantly higher estimates of annual N2O emissions than the IPCC default methodology, almost entirely because of the increased contribution of grazed pasture. Total emissions from applied fertilizer and N deposited by grazing animals are estimated at 10 662 t N2O‐N yr?1 using the newly derived EFs, as opposed to 6 796 t N2O‐N yr?1 using the IPCC default EFs. On a spatial basis, emission levels are closer to those calculated using field observations and detailed soil modelling than to estimates made using the IPCC default methodology. This can be illustrated by parts of the western Ayrshire basin, which have previously been calculated to emit 8–9 kg N2O‐N ha?1 yr?1 and are estimated here as 6.25–8.75 kg N2O‐N ha?1 yr?1, while the IPCC default methodology gives a maximum emission level of only 3.75 kg N2O‐N ha?1 yr?1 for the whole area. The new methodology is also applied in conjunction with scenarios for future climate‐ and land‐use patterns, to assess how these emissions may change in the future. The results suggest that by 2080, Scottish N2O emissions may increase by up to 14%, depending on the climate scenario, if fertilizer and land management practices remain unchanged. Reductions in agricultural land use, however, have the potential to mitigate these increases and, depending on the replacement land use, may even reduce emissions to below current levels.  相似文献   

8.
Nitrous oxide (N2O) emissions are subject to intra‐ and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short‐term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in N2O emissions. The objectives of this study were to (i) quantify annual N2O emissions and (ii) assess the causes of interannual variation in emissions from grazed perennial ryegrass/white clover grassland. Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51′N, 08°21′W). The annual N2O‐N emissions (kg ha?1; mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2O emissions highlights the need for long‐term studies of emissions from managed pastoral systems.  相似文献   

9.
Understanding spatial variability of emissions of nitrous oxide (N2O) is essential to understanding of N2O emissions from soils to the atmosphere and in the design of statistically valid measurement programs to determine plot, farm and regional emission rates. Two afternoon, ‘snap-shot’ experiments were conducted; one in the summer and one in the autumn of 2004, to examine the statistics and soil variables affecting the spatial variability of N2O emissions at paddock scale. Small, static chambers (mini-chambers) were placed at 100 locations over an 8,100 m2 area of irrigated dairy pasture in northern Victoria, Australia. Chamber headspace was sampled for N2O and soil samples taken below each mini-chamber were analysed for soil nitrate (NO3 -), ammonium (NH4 +) and other chemical and physical properties known to affect N2O emissions. The experiments took place immediately after the sequence of grazing, urea application and irrigation. Nitrous oxide emissions and soil variables were analysed using classical statistics to investigate the effect of soil variables on N2O emissions. Geostatistics were used to investigate spatial patterns of N2O emissions and soil variables over the measurement area. Nitrous oxide emissions were extremely variable; 45–765 ng N2O–N m?2 s?1 and 20–953 ng N2O–N m?2 s?1 for the two experiments with corresponding averages of 165 and 138 ng N2O–N m?2 s?1. Nitrous oxide emissions showed spatial dependence up to 73 and 51 m for the two experiments. Nitrous oxide emissions showed significant correlation with soil nutrients in decreasing order of NO3 -, NH4 + and available-P concentrations. There was no significant correlation of N2O emissions with measured soil physical properties.  相似文献   

10.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

11.
While irrigation of farm dairy effluent (FDE) to land is becoming popular in New Zealand, it can lead to increased emissions of the greenhouse gas nitrous oxide (N2O). This paper reports the results from trials on N2O emissions from irrigation of FDE to two dairy-grazed pastures on two poorly drained silt-loam soils located at Waikato and Manawatu, New Zealand. These pasture soils were periodically irrigated with FDE under contrasting soil moisture conditions with water-filled pore-space (WFPS) ranging between 26% and 94%. Nitrous oxide emissions were measured from the FDE irrigated and unirrigated sites using large numbers of static chambers (12–20). Irrigation of FDE generally increased N2O emissions compared to the control. N2O emissions varied with changes in climatic conditions and soil WFPS. Overall N2O emissions from effluent-derived N ranged between 0.01% and 4.93% depending on irrigation time and soil WFPS. Lower N2O emissions from FDE were attributable to very low soil WFPS conditions during the dry seasons. Higher N2O emissions were measured from application of FDE to a recently grazed pasture on wet soil. Our results suggest strategic application of FDE during dry summer and autumn seasons can reduce N2O emissions from application of FDE. Delaying effluent-irrigation after grazing events could further reduce N2O emissions by reducing the levels of surplus mineral-N.  相似文献   

12.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

13.
Wildfire is a major disturbance in Baikiaea plurijuga Harms woodland savannas. We tested the hypothesis that the timing and intensity of herbivory influence fuel loads. We used three stocking rates namely light (three cows and four goats ha?1), medium (six cows and eight goats ha?1) and heavy (eleven cows and sixteen goats ha?1) and three times of grazing namely early‐, middle‐ and late‐growing seasons. Season of grazing and stocking rate influenced herbaceous phytomass. Phytomass was generally the highest (53.5 g DM m?2) in paddocks grazed during the early growing season and the lowest (27.8 g DM m?2) in those grazed during the late growing season. Phytomass was also generally the highest (40.4 g DM m?2) in lightly stocked paddocks and the lowest (32.7 g DM m?2) in heavily stocked ones. Litter mass was the lowest (160.8 g DM m?2) in paddocks grazed during the early season whereas there were no differences in ungrazed paddocks and those grazed during either mid‐ or late growing seasons (205.4 g DM m?2). There was a negative relationship between litter mass and stocking rate. Baikiaea Benth. woodlands should be grazed during either the mid‐ or late‐growing season at stocking rates greater than 0.1 LU ha?1 to reduce grass fuel loads.  相似文献   

14.
Intensive dairy farming systems are a large source of emission of the greenhouse gas nitrous oxide (N2O), because of high nitrogen (N) application rates to grasslands and silage maize fields. The objective of this study was to compare measured N2O emissions from two different soils to default N2O emission factors, and to look at alternative emission factors based on (i) the N uptake in the crop and (ii) the N surplus of the system, i.e., N applied minus N uptake by the crop. Twelve N fertilization regimes were implemented on a sandy soil (typic endoaquoll) and a clay soil (typic endoaquept) in the Netherlands, and N2O emissions were measured throughout the growing season. Highest cumulative fluxes of 1.92 and 6.81 kg N2O-N ha–1 for the sandy soil and clay soil were measured at the highest slurry application rate of 250 kg N ha–1. Background emissions from unfertilized soils were 0.14 and 1.52 kg N2O-N ha–1 for the sandy soil and the clay soil, respectively. Emission factors for the sandy soil averaged 0.08, 0.51 and 0.26% of the N applied via fertilizer, slurry, and combinations of both. For the clay soil, these numbers were 1.18, 1.21 and 1.69%, respectively. Surplus N was linearly related to N2O emission for both the sandy soil (R2=0.60) and the clay soil (R2=0.40), indicating a possible alternative emission factor. We concluded that, in our study, N2O emission was not linearly related to N application rates, and varied with type and application rate of fertilizer. Finally, the relatively high emission from the clay soil indicates that background emissions might have to be taken into account in N2O budgets.  相似文献   

15.

Aims

A field experiment was conducted to investigate the effect of biochar on maize yield and greenhouse gases (GHGs) in a calcareous loamy soil poor in organic carbon from Henan, central great plain, China.

Methods

Biochar was applied at rates of 0, 20 and 40?t?ha?1 with or without N fertilization. With N fertilization, urea was applied at 300?kg?N ha?1, of which 60% was applied as basal fertilizer and 40% as supplementary fertilizer during crop growth. Soil emissions of CO2, CH4 and N2O were monitored using closed chambers at 7?days intervals throughout the whole maize growing season (WMGS).

Results

Biochar amendments significantly increased maize production but decreased GHGs. Maize yield was increased by 15.8% and 7.3% without N fertilization, and by 8.8% and 12.1% with N fertilization under biochar amendment at 20?t?ha?1 and 40?t?ha?1, respectively. Total N2O emission was decreased by 10.7% and by 41.8% under biochar amendment at 20?t?ha?1 and 40?t?ha?1 compared to no biochar amendment with N fertilization. The high rate of biochar (40?t?ha?1) increased the total CO2 emission by 12% without N fertilization. Overall, biochar amendments of 20?t?ha?1 and 40?t?ha?1 decreased the total global warming potential (GWP) of CH4 and N2O by 9.8% and by 41.5% without N fertilization, and by 23.8% and 47.6% with N fertilization, respectively. Biochar amendments also decreased soil bulk density and increased soil total N contents but had no effect on soil mineral N.

Conclusions

These results suggest that application of biochar to calcareous and infertile dry croplands poor in soil organic carbon will enhance crop productivity and reduce GHGs emissions.  相似文献   

16.
An agronomic assessment of greenhouse gas emissions from major cereal crops   总被引:8,自引:0,他引:8  
Agricultural greenhouse gas (GHG) emissions contribute approximately 12% to total global anthropogenic GHG emissions. Cereals (rice, wheat, and maize) are the largest source of human calories, and it is estimated that world cereal production must increase by 1.3% annually to 2025 to meet growing demand. Sustainable intensification of cereal production systems will require maintaining high yields while reducing environmental costs. We conducted a meta‐analysis (57 published studies consisting of 62 study sites and 328 observations) to test the hypothesis that the global warming potential (GWP) of CH4 and N2O emissions from rice, wheat, and maize, when expressed per ton of grain (yield‐scaled GWP), is similar, and that the lowest value for each cereal is achieved at near optimal yields. Results show that the GWP of CH4 and N2O emissions from rice (3757 kg CO2 eq ha?1 season?1) was higher than wheat (662 kg CO2 eq ha?1 season?1) and maize (1399 kg CO2 eq ha?1 season?1). The yield‐scaled GWP of rice was about four times higher (657 kg CO2 eq Mg?1) than wheat (166 kg CO2 eq Mg?1) and maize (185 kg CO2 eq Mg?1). Across cereals, the lowest yield‐scaled GWP values were achieved at 92% of maximal yield and were about twice as high for rice (279 kg CO2 eq Mg?1) than wheat (102 kg CO2 eq Mg?1) or maize (140 kg CO2 eq Mg?1), suggesting greater mitigation opportunities for rice systems. In rice, wheat and maize, 0.68%, 1.21%, and 1.06% of N applied was emitted as N2O, respectively. In rice systems, there was no correlation between CH4 emissions and N rate. In addition, when evaluating issues related to food security and environmental sustainability, other factors including cultural significance, the provisioning of ecosystem services, and human health and well‐being must also be considered.  相似文献   

17.
Rates and patterns of nitrogen transformation differ in divergently managed pasture soils. In pastures with low nutrient inputs, N is utilized efficiently and it is assimilated by plants and soil microorganisms for synthesis of biomass. In more intensive pastures, characterized with higher N inputs, significant amounts of N can be lost from the ecosystem in various forms. Two soils of a cattle overwintering area with different levels of cattle disturbance were supplied with a solution of KNO3 in various levels corresponding in range to 0–500 kg N ha?1. Emissions of N2O were measured during 24 h after a NO3 ?-N application. We hypothesized that under a low disturbance small additions of up to 5 kg NO3 ?-N are used by plants and soil microbes without an increase in N2O emissions, while a pasture adapted to a moderate disturbance will increase N2O emissions. Results showed that in both soils, the addition of N always increased N2O emissions, while emissions were more pronounced in soil at the location with a higher intensity of cattle traffic. Contrary to our hypothesis, however, NO3 –N was not fully metabolized in the soil with low disturbance by the cattle. Probable explanations of such a result were lower intensity of N transformations in this soil and low utilisation of N by grass. Our results suggest that under certain conditions relatively low nitrate-N inputs can also stimulate N2O fluxes from soils.  相似文献   

18.
Understanding nitrous oxide (N2O) and methane (CH4) fluxes from agricultural soils in semi‐arid climates is necessary to fully assess greenhouse gas emissions from bioenergy cropping systems, and to improve our knowledge of global terrestrial gaseous exchange. Canola is grown globally as a feedstock for biodiesel production, however, resulting soil greenhouse gas fluxes are rarely reported for semi‐arid climates. We measured soil N2O and CH4 fluxes from a rain‐fed canola crop in a semi‐arid region of south‐western Australia for 1 year on a subdaily basis. The site included N fertilized (75 kg N ha?1 yr?1) and nonfertilized plots. Daily N2O fluxes were low (?1.5 to 4.7 g N2O‐N ha?1 day?1) and culminated in an annual loss of 128 g N2O‐N ha?1 (standard error, 12 g N2O‐N ha?1) from N fertilized soil and 80 g N2O‐N ha?1 (standard error, 11 g N2O‐N ha?1) from nonfertilized soil. Daily CH4 fluxes were also low (?10.3 to 11.9 g CH4‐C ha?1 day?1), and did not differ with treatments, with an average annual net emission of 6.7 g CH4–C ha?1 (standard error, 20 g CH4–C ha?1). Greatest daily N2O fluxes occurred when the soil was fallow, and following a series of summer rainfall events. Summer rainfall increased soil water contents and available N, and occurred when soil temperatures were >25 °C, and when there was no active plant growth to compete with soil microorganisms for mineralized N; conditions known to promote N2O production. The proportion of N fertilizer emitted as N2O, after correction for emissions from the no N fertilizer treatment, was 0.06%; 17 times lower than IPCC default value for the application of synthetic N fertilizers to land (1.0%). Soil greenhouse gas fluxes from bioenergy crop production in semi‐arid regions are likely to have less influence on the net global warming potential of biofuel production than in temperate climates.  相似文献   

19.

Background and aims

High nitrous oxide (N2O) emissions may occur during the non-rice growing season of Chinese rice-upland crop rotation systems. However, our understanding of N2O emission during this season is poor due to a scarcity of available field N2O measurements.

Methods

Using the static manual chamber-GC technique, seasonal N2O emissions during the non-rice growing season were simultaneously measured at two adjacent rice-wheat and rice-rapeseed fields in southwest China for three consecutive annual rotation cycles (May 2005 to May 2008).

Results

Compared to the control, N fertilizer applications significantly enhanced soil N2O emissions from both wheat and rapeseed systems. Seasonal cumulative N2O fluxes from wheat systems were on average 2.6 kg N ha?1 for the recommended practice (RP [150 kg N ha?1]) and 5.0 kg N ha?1 for the conventional practice (CP [250 kg N ha?1]). Lower N2O emissions were observed from the adjacent rapeseed systems. Average cumulative seasonal N2O fluxes from rapeseed were 1.5 and 2.2 kg N ha?1 for the RP and CP treatments, respectively. The first 3 weeks after N fertilization were the “hot moment” of N2O emissions for both the wheat and rapeseed systems. The lowest yield-scaled N2O fluxes for wheat were obtained at the RP treatment (mean: 0.81 kg N Mg?1) while for rapeseed the CP treatment produced the lowest yield-scaled fluxes (mean: 0.79 kg N Mg?1). On average, the direct N2O emission factors (EFd) for the wheat system (1.76 %) were over two times higher than for the rapeseed system (0.73 %).

Conclusions

Intercropping of rapeseed tends to result in lower N2O emissions than wheat for rice-upland crop rotation systems of southwest China, indicating that either the N fertilization or the cropping system need to be considered not only for improving the estimate of regional and/or national N2O fluxes but also for proposing the climate-smart agricultural management practice to reduce N2O emissions from agricultural soils.  相似文献   

20.
Pristine peatlands have generally low nitrous oxide (N2O) emissions but drainage and management practices enhance the microbial processes and associated N2O emissions. It is assumed that leaving peat soils from intensive management, such as agriculture, will decrease their N2O emissions. In this paper we report how the annual N2O emission rates will change when agricultural peat soil is either left abandoned or afforested and also N2O emissions from afforested peat extraction sites. In addition, we evaluated a biogeochemical model (DNDC) with a view to explaining GHG emissions from peat soils under different land uses. The abandoned agricultural peat soils had lower mean annual N2O emissions (5.5?±?5.4?kg?N?ha?1) than the peat soils in active agricultural use in Finland. Surprisingly, N2O emissions from afforested organic agricultural soils (12.8?±?9.4?kg?N?ha?1) were similar to those from organic agricultural soils in active use. These emissions were much higher than those from the forests on nutrient rich peat soils. Abandoned and afforested peat extraction sites emitted more N2O, (2.4?±?2.1?kg?N?ha?1), than the areas under active peat extraction (0.7?±?0.5?kg?N?ha?1). Emissions outside the growing season contributed significantly, 40% on an average, to the annual emissions. The DNDC model overestimated N2O emission rates during the growing season and indicated no emissions during winter. The differences in the N2O emission rates were not associated with the age of the land use change, vegetation characteristics, peat depth or peat bulk density. The highest N2O emissions occurred when the soil C:N ratio was below 20 with a significant variability within the measured C:N range (13–27). Low soil pH, high nitrate availability and water table depth (50–70?cm) were also associated with high N2O emissions. Mineral soil has been added to most of the soils studied here to improve the fertility and this may have an impact on the N2O emissions. We infer from the multi-site dataset presented in this paper that afforestation is not necessarily an efficient way to reduce N2O emissions from drained boreal organic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号