首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient nitrogen-fixing strains selected in the laboratory often fail to increase legume production in agricultural soils containing indigenous rhizobial populations because they cannot compete against these populations for nodule formation. We have previously demonstrated, with a Sinorhizobium meliloti PutA mutant strain, that proline dehydrogenase activity is required for colonization and therefore for the nodulation efficiency and competitiveness of S. meliloti on alfalfa roots (J. I. Jiménez-Zurdo, P. van Dillewijn, M. J. Soto, M. R. de Felipe, J. Olivares, and N. Toro, Mol. Plant-Microbe Interact. 8:492–498, 1995). In this work, we investigated whether the putA gene could be used as a means of increasing the competitiveness of S. meliloti strains. We produced a construct in which a constitutive promoter was placed 190 nucleotides upstream from the start codon of the putA gene. This resulted in an increase in the basal expression of this gene, with this increase being even greater in the presence of the substrate proline. We found that the presence of multicopy plasmids containing this putA gene construct increased the competitiveness of S. meliloti in microcosm experiments in nonsterile soil planted with alfalfa plants subjected to drought stress only during the first month. We investigated whether this construct also increased the competitiveness of S. meliloti strains under agricultural conditions by using it as the inoculum in a contained field experiment at León, Spain. We found that the frequency of nodule occupancy was higher with inoculum containing the modified putA gene for samples that were analyzed after 34 days but not for samples that were analyzed later.  相似文献   

2.
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic β-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.  相似文献   

3.
Co-inoculation with antibiotic-producing bacteria and rhizobia resistant to those antibiotics has been proposed as a means of promoting colonization and nodulation of legumes by root-nodule bacteria. A study was conducted to establish some of the factors affecting co-inoculation with antibiotic-producing strains of Bacillus and Streptomyces griseus. The stimulation of Rhizobium meliloti and yield and N uptake by alfalfa was enhanced with increasing inoculum size of Bacillus sp. S. griseus and chitin added to soil increased nodulation of soybeans by Bradyrhizobium japonicum and increased nodulation, yield, and number of pods on a second crop grown in the same soil. Bacillus sp. persisted in soil in sufficient numbers for at least 51 days to increase colonization of soybean roots by B. japonicum. The populations of S. griseus, Bacillus sp., and antibiotic-resistant isolates of R. meliloti and B. japonicum fell after their addition to seeds. Nevertheless, a benefical effect by the antibiotic-producing bacteria was evident on R. meliloti colonization of the rhizosphere, nodulation, and yield of alfalfa grown from seeds stored 94 days and on B. japonicum colonization, nodule number, yield, and seed weight of soybeans grown from seeds stored 90 days. Because non-antibiotic-producing derivatives of Bacillus sp. and S. griseus did not promote colonization or nodulation of alfalfa roots by R. meliloti, the benefit of this co-inoculation is a result of antibiotic formation.  相似文献   

4.
Nodule formation by wild-type Rhizobium meliloti is strongly suppressed in younger parts of alfalfa (Medicago sativum L.) root systems as a feedback response to development of the first nodules (G Caetano-Anollés, WD Bauer [1988] Planta 175: 546-557). Mutants of R. meliloti deficient in exopolysaccharide synthesis can induce the formation of organized nodular structures (pseudonodules) on alfalfa roots but are defective in their ability to invade and multiply within host tissues. The formation of empty pseudonodules by exo mutants was found to elicit a feedback suppression of nodule formation similar to that elicited by the wild-type bacteria. Inoculation of an exo mutant onto one side of a split-root system 24 hours before inoculation of the second side with wild-type cells suppressed wild-type nodule formation on the second side in proportion to the extent of pseudonodule formation by the exo mutants. The formation of pseudonodules is thus sufficient to elicit systemic feedback control of nodulation in the host root system: infection thread development and internal proliferation of the bacteria are not required for elicitation of feedback. Pseudonodule formation by the exo mutants was found to be strongly suppressed in split-root systems by prior inoculation on the opposite side with the wild type. Thus, feedback control elicited by the wild-type inhibits Rhizobium-induced redifferentiation of host root cells.  相似文献   

5.
Nodulin gene expression was analyzed in effective and ineffective root nodules of alfalfa (Medicago sativa L. cv Iroquois) elicited by three different Rhizobium meliloti mutants: an exoB mutant having defective acidic exopolysaccharide that does not fluoresce on plates containing the fluorescent brightener Calcofluor; fix21, a spontaneous mutant that has defective lipopolysaccharide and is Calcofluor bright; and a Rhizobium mutant resulting from a Tn5 insertion in the nifH gene of the nif operon. The ineffective nodules elicited by these various mutant rhizobia are blocked at different stages of nodule development and have unique phenotypes. A distinctive pattern of nodulin gene expression as determined by in vitro translations of total nodule RNA characterizes each nodule phenotype. Seventeen nodulins are found in effective nodules including five leghemoglobins. Only one nodulin gene is expressed in the bacteria-free nodules elicited by the exoB mutant. Other nodulin genes (leghemoglobin and nine others) are expressed in fix21-induced nodules. The genes for nodule-enhanced glutamine synthetase as well as for all the other nodulins are expressed in nodules induced by the nifH mutant. The expression of genes for the nodulins, including leghemoglobin, is independent of the nitrogen-fixing ability of the nodule and appears to correlate with the differentiation of densely cytoplasmic host cells in the nodule and, to some extent, with bacterial release from infection threads.  相似文献   

6.
Saprophytic rhizoactinomycetes isolated from the root nodule surface of the nitrogen-fixing actinorhizal plant Discaria trinervis, Streptomyces MM40, Actinoplanes ME3, and Micromonospora MM18, previously shown to stimulate nodulation in Frankia-Discaria trinervis symbiosis, were assayed as co-inoculants with Sinorhizobium meliloti 2011 on Medicago sativa. When plants were fertilized with a low level of N (0.07 mM), the inoculation of the actinomycetes alone did not show any effect on plant growth. Meanwhile, when actinomycetes were co-inoculated with S. meliloti, nodulation and plant growth were significantly stimulated compared to plants inoculated with only S. meliloti. The analysis of nodulation kinetics of simultaneously or delayed co-inoculations suggests that the effect of the actinomycetes operates in early infection and nodule development counteracting the autoregulation of nodulation by the plant. Because the actinomycete effect was found in the symbiotic nitrogen-fixing state of the plant, we investigated the effects of the actinomycetes, in single inoculation or co-inoculation with S. meliloti, on plants grown under a high level of N (7 mM) that was inhibitory for nodulation by S. meliloti. The inoculation of the actinomycetes alone did not show any effect on plant growth although high N was available. Unexpectedly, the co-inoculation of actinomycetes with S. meliloti on plants grown with high N (7 mM) significantly stimulates nodulation, clearly counteracting the inhibition of nodulation by high N. These results corroborate that the interaction of rhizoactinomycetes would interfere with the autoregulation of nodulation in alfalfa mediated by high N, opening new research lines of potential agronomical applications.  相似文献   

7.
A mutant (WL3A150) of Rhizobium meliloti 102F51 that elicits an unusually high number of nodules on its host, alfalfa (Medicago sativa), supports the idea that the host may rely on early bacteroid development in the nodule or on metabolites produced in the infection thread as one of the signals to control further nodulation. This mutant was initially isolated because of its Fix phenotype. It consistently formed many more nodules than all the other Fix mutants isolated from strain 102F51 (a total of 11 mutants). Nodules formed by this mutant were small and white and were indistinguishable in appearance from nodules formed by the other Fix mutants. An ultrastructural study of the nodules, however, showed that this mutant, although forming numerous infection threads, failed to develop into bacteroids. The ability of the mutant to form an unusually high number of nodules coulde be suppressed in a time-dependent manner by the presence of the wild type.  相似文献   

8.

The genome of the nitrogen-fixing soil bacterium Sinorhizobium meliloti does not possess genes for bioremediation of aromatic pollutants. It has the well-known ability to interact specifically with the leguminous alfalfa plant, Medicago sativa. Our previous work has shown enhanced degradation of the nitroaromatic compound 2,4-dinitrotoluene (DNT) when a plasmid containing degradative genes was introduced in it. In this study we report molecular evidence of the transfer of a polychlorinated biphenyl (PCB)-biodegradative plasmid pE43 to S. meliloti strain USDA 1936. Several standard analytical tests and plant growth chamber studies were conducted to test the ability of S. meliloti to degrade 2′,3,4-PCB congener. Alfalfa plant alone was able to degrade 30% of PCBs compared with control. No enhanced dechlorination was noted when alfalfa plant was grown with wild-type S. meliloti, and when alfalfa plant was grown with the S. meliloti electrotransformants (genetically modified) dechlorination of PCBs was more than twice that when alfalfa plant was grown with wild-type S. meliloti. When alfalfa plant was grown with uncharacterized mixed culture (containing nodule formers), almost equally significant PCB degradation was observed. The significance of this work is that the naturally occurring nitrogen-fixing soil bacterium S. meliloti (genetically modified) has the ability to enhance fertility of soil in association with the leguminous alfalfa plant while simultaneously enhancing bioremediation of PCB-contaminated soils. Enhanced bioremediation of PCB and robust alfalfa plant growth was also noted when uncharacterized mixed cultures containing alfalfa plant nodule formers were used.

  相似文献   

9.
Swanson JA  Tu JK  Ogawa J  Sanga R  Fisher RF  Long SR 《Genetics》1987,117(2):181-189
Rhizobium meliloti Nod- mutant WL131, a derivative of wild-type strain 102F51, was complemented by a clone bank of wild-type R. meliloti 1021 DNA, and clone pRmJT5 was recovered. Transfer of pRmJT5 conferred alfalfa nodulation on other Rhizobium species, indicating a role in host range determination for pRmJT5. Mutagenesis of pRmJT5 revealed several segments in which transposon insertion causes delay in nodulation, and/or marked reduction of the number of nodules formed on host alfalfa plants. The set of mutants indicated five regions in which nod genes are located; one mutant, nod-216, is located in a region not previously reported to encode a nodulation gene. Other mutant phenotypes correlated with the positions of open reading frames for nodH, nodF and nodE , and with a 2.2-kb EcoRI fragment. A mutant in nodG had no altered phenotype in this strain. One nodulation mutant was shown to be a large deletion of the common nod gene region. We present a discussion comparing the various studies made on this extended nod gene region.  相似文献   

10.
Fifteen nodulins and several nodule-stimulated gene productswere expressed in effective, nitrogen-fixing root nodules ofwhite sweetclover (Melilotus alba Desr. cv. U389), as determinedby two-dimensional gel electrophoresis of in vitro translationproducts. The number and gel position of eight leghaemoglobin(Lb) products, as well as a product tentatively identified asnodule-stimulated glutamine synthetase (GS), was similar toprevious reports of alfalfa (Medicago sativa L. cv. Iroquois)nodulins. Three mutants of Rhizobium meliloti, including anexoH mutant, a lipopolysaccharide mutant, and a nifH mutant,elicited ineffective sweetclover nodules blocked at empty (bacteria-free),partially infected, or fully infected stages of nodule development,respectively. In these ineffective nodules, the nodulin Nma30and nodule-stimulated NSTma42 were expressed early in development,while a group of four nodulins and two nodule-stimulated productswere intermediate in order of expression. Lb, GS and the latenodulin Nmal2a were expressed later, following infection. TheexoH mutant, Rm7154, appeared to be a leaky mutant, as a smallpercentage of the plants developed nitrogen-fixing nodules about4 weeks after inoculation. The sequential expression of a largenumber of nodulins and nodule-stimulated products, as well asthe availability of sweetclover nodulation mutants indicatesthat sweetclover is a useful diploid system for analysis ofhost genes essential to the Rhizobium/legume symbiosis. Key words: Nitrogen fixation, nodulation mutants, nodulins  相似文献   

11.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

12.
Using a plate induction assay, we demonstrate that alfalfa exudes inducer of Rhizobium meliloti nodulation genes. The inducer is exuded from the infectible zone of the root, accumulates to at least 1 micromolar, and is not affected by 10 millimolar nitrate. No zones of inhibition are observed. A nodulation minus mutant line of alfalfa, MN-1008, exudes normal levels of inducer. R. meliloti grown in rich medium requires ten-fold higher concentrations of luteolin to achieve half-maximal induction as compared to cells grown in a minimal medium. Flavonoids other than luteolin are found to have activity in R. meliloti nodulation gene induction assays. The compounds apigenin and eriodictyol have activities two-fifths and one-seventh that of luteolin, respectively. Several of the flavonoids tested (morin = naringenin > kaempferol = chrysin > quercetin = fisetin = hesperitin) demonstrate antagonistic activity toward induction by luteolin. The most effective antagonist is the coumarin, umbelliferone.  相似文献   

13.
为研究苜蓿中华根瘤菌脂肪酸脱饱和酶desA基因在不饱和脂肪酸合成、共生结瘤固氮以及应对逆境胁迫中的功能,为高效利用苜蓿中华根瘤菌提供理论依据,本文通过异体遗传互补和脂肪酸组成薄层层析,分析SmdesA编码蛋白是否具有脱饱和酶的活性并参与不饱和脂肪酸的合成,构建SmdesA的缺失突变株和互补菌株,比较各菌株在不同逆境胁迫条件下的生长速率以及回接宿主植物后与紫花苜蓿共生结瘤的能力.结果表明SmdesA不能互补大肠杆菌CY57中EcfabA的突变,但具有将饱和脂肪酸脱饱和形成不饱和的棕榈油酸和十八碳烯酸的能力.另外,SmdesA缺失突变对苜蓿中华根瘤菌的脂肪酸组成影响不大,但会显著影响低温和高盐条件下菌株的生长速率以及与紫花苜蓿共生结瘤的能力.我们推测,SmdesA参与的脱饱和途径可能是苜蓿中华根瘤菌不饱和脂肪酸合成的补偿途径,其编码的蛋白DesA不是不饱和脂肪酸合成的关键酶,但在应对逆境胁迫和共生结瘤中具有重要的生物学功能.  相似文献   

14.
The formation of first nodules inhibits subsequent nodulation in younger regions of alfalfa (Medicago sativa L.) roots by a feedback regulatory mechanism that controls nodule number systemically (G Caetano-Anollés, WD Bauer [1988] Planta 175: 546-557). Following inoculation with wild-type Rhizobium meliloti, almost all infections associated with cortical cell division developed into mature nodules. While the distribution of Rhizobium- induced cell divisions closely paralleled the distribution of first emergent nodules, only 9 to 15% of total cell division foci failed to become functional nodules. Nodule formation was restricted to the primary root when plants were inoculated before lateral root emergence. Excision of these primary root nodules allowed nodules to reappear in lateral roots clustered around the location of the root tip at the time of nodule removal. Apparently, this region regained susceptibility to infection within the first hours after excision of primary nodules and suppression of nodulation was restored a day later probably due to the development of new infection foci. Our results suggest that alfalfa controls nodulation during the onset of cell division in the root cortex and not during infection development as in soybean.  相似文献   

15.
Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.  相似文献   

16.
The addition of streptomycin to nonsterile soil suppressed the numbers of bacterial cells in the rhizosphere of alfalfa (Medicago sativa L.) for several days, resulted in the enhanced growth of a streptomycin-resistant strain of Rhizobium meliloti, and increased the numbers of nodules on the alfalfa roots. A bacterial mixture inoculated into sterile soil inhibited the colonization of alfalfa roots by R. meliloti, caused a diminution in the number of nodules, and reduced plant growth. Enterobacter aerogenes, Pseudomonas marginalis, Acinetobacter sp., and Klebsiella pneumoniae suppressed the colonization by R. meliloti of roots grown on agar and reduced nodulation by R. meliloti, the suppression of nodulation being statistically significant for the first three species. Bradyrhizobium sp. and “Sarcina lutea” did not suppress root colonization nor nodulation by R. meliloti. The doubling times in the rhizosphere for E. aerogenes, P. marginalis, Acinetobacter sp., and K. pneumoniae were less and the doubling times for Bradyrhizobium sp. and “S. lutea” were greater than the doubling time of R. meliloti. Under the same conditions, Arthrobacter citreus injured alfalfa roots. We suggest that competition by soil bacteria reduces nodulation by rhizobia in soil and that the extent of inhibition is related to the growth rates of the rhizosphere bacteria.  相似文献   

17.
K. Niehaus  D. Kapp  A. Pühler 《Planta》1993,190(3):415-425
Mutants of the symbiotic soil bacterium Rhizobium meliloti that fail to synthesize the acidic exopolysaccharide EPS I were unable to induce infected root nodules on Medicago sativa L. (alfalfa). These strains, however, elicited pseudonodules that contained no infection threads or bacteroids. The cortical cell walls of the pseudonodules were abnormally thick and incrusted with an autofluorescent material. Parts of these cell walls and wall appositions contained callose. Biochemical analysis of nodules induced by the EPS I-deficient R. meliloti mutant revealed an increase of phenolic compounds bound to the nodule cell walls when compared with the wild-type strain. These microscopic and biochemical data indicated that a general plant defence response against the EPS I-deficient mutant of R. meliloti was induced in alfalfa pseudonodules. Following prolonged incubation with the EPS I-deficient R. meliloti mutant, the defence system of the alfalfa plant could be overcome by the rhizobium mutant. In the case of the delayed infections, the mutants colonized lobes of the pseudonodules, but the infection threads in these nodules had an abnormal morphology. They were greatly enlarged and did not contain the typical gum-like matrix inside. The bacteria were tightly packed. Based on the mechanism of phytopathogenic interactions, we propose that EPS I or a related compound may act as a suppressor of the alfalfa plant defence system, enabling R. meliloti to infect the plant.  相似文献   

18.
The expression of the pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) of Rhizobium tropici CIAT899 and Sinorhizobium meliloti RCR2011 was investigated under different nutrient-limiting conditions in continuous cultures, under different conditions of phosphate availability, and in S. meliloti bacteroids. The presence of free PQQ in alfalfa root exudates has also been assayed. It was shown that apo-GDH or holoenzyme was actively synthesized by these rhizobia, with the concomitant production of gluconate from glucose, under certain environmental conditions. GDH activity was also detected in bacteroids from alfalfa root nodules inoculated with either S. meliloti RCR2011 or 102F34. It was also shown that free PQQ was present in root exudates of alfalfa, but its production is ascribed to the activity of Erwinia sp., a normal contaminant of these seeds. Received: 28 August 2000 / Accepted: 2 October 2000  相似文献   

19.
Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.

Precise spatial and temporal characterization of cytokinin (CK) responses reveals the function of the CK biosynthesis gene ISOPENTENYLTRANSFERASE 3 during nodule development in Medicago truncatula.  相似文献   

20.
Fluorescent pseudomonads catabolize glucose simultaneously by two different pathways, namely, the oxidative pathway in periplasm and the phosphorylative pathway in cytoplasm. This study provides evidence for the role of glucose metabolism in the regulation of pyoverdine synthesis in Pseudomonas putida S11. We have characterized the influence of direct oxidation of glucose in periplasm on pyoverdine synthesis in P. putida S11. We identified a Tn5 transposon mutant of P. putida S11 showing increased pyoverdine production in minimal glucose medium (MGM). This mutant designated as IST1 had Tn5 insertion in glucose dehydrogenase (gcd) gene. To verify the role of periplasmic oxidation of glucose on pyoverdine synthesis, we constructed mutants S11 Gcd? and S11 PqqF? by antibiotic cassette mutagenesis. These mutants of P. putida S11 with loss of glucose dehydrogenase gene (gcd) or cofactor pyrroloquinoline quinone biosynthesis gene (pqqF) showed increased pyoverdine synthesis and impaired acid production in MGM. In minimal gluconate medium, the pyoverdine production of wild-type strain S11 and mutants S11 Gcd? and S11 PqqF? was higher than in MGM indicating that gluconate did not affect pyoverdine synthesis. In MGM containing PIPES–NaOH (pH?7.5) buffer which prevent pH changes due to gluconic acid production, strain S11 produced higher amount of pyoverdine similar to mutants S11 Gcd? and S11 PqqF?. Therefore, it is proposed that periplasmic oxidation of glucose to gluconic acid decreases the pH of MGM and thereby influences pyoverdine synthesis of strain S11. The increased pyoverdine synthesis enhanced biotic and abiotic surface colonization of the strain S11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号