首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In calcareous salt-affected soils, iron availability to plants is subjected to the effects of both sodium and bicarbonate ions. Our aim was to study interactive effects of salinity and iron deficiency on iron acquisition and root acidification induced by iron deficiency in Medicago ciliaris L., a species commonly found in saline ecosystems. Four treatments were used: C, control treatment, complete medium (CM) containing 30 microM Fe; S, salt treatment, CM with 75 mM NaCl; D, deficient treatment, CM containing only 1 microM Fe; DS, interactive treatment, CM containing 1 microM Fe with 75 mM NaCl. Our study showed that plant growth and chlorophyll content were much more affected by the interactive treatment than by iron deficiency or by the salt treatment, indicating an additive effect of these constraints in DS plants. These results could be partially explained by Na accumulation in shoots as well as a limitation of nutrient uptake such as Fe and K under salt stress, under iron deficiency, and especially under their combined effect. The study also showed that root acidification was deeply diminished when iron deficiency was associated with salinity. This probably explained the decrease of Fe uptake and suggested that root proton pump activity would be inhibited by salinity.  相似文献   

2.
Rengel  Z. 《Plant and Soil》1997,196(2):255-260
Crop genotypes differ in their tolerance to micronutrient-deficient soils, but the underlying mechanisms are poorly understood. This paper reviews information on mechanisms of tolerance to Zn and Mn deficiency, concentrating on plant-induced changes in chemistry and biology of rhizosphere that alter availability of Zn and Mn.When grown under conditions of Zn deficiency, wheat genotypes more tolerant of Zn deficiency released greater amounts of phytosiderophore, 2-deoxymugineic acid, than the sensitive genotypes. In addition, Zn deficiency increased numbers of fluorescent pseudomonads in rhizosphere of all wheat genotypes tested, but the effect was particularly obvious for genotypes tolerant of Zn deficiency.Rhizosphere of wheat genotypes contained an increased proportion of Mn reducers under Mn-deficiency compared to Mn-sufficiency conditions. When grown in soils of low Mn availability, some wheat genotypes tolerant of Mn deficiency (like cv. Aroona) had a greater ratio of Mn-reducers to Mn-oxidisers in the rhizosphere compared to the sensitive genotypes. In contrast, microflora in the rhizosphere of other wheat genotypes tolerant of Mn deficiency (like C8MM) did not show the same response as Aroona. It therefore appears that different mechanisms may underlie the expression of tolerance to Mn deficiency in wheat genotypes.It is concluded that wheat genotypes tolerant of Zn or Mn deficiency have a capacity to alter chemical and biological properties of the rhizosphere, thus increasing availability of critical micronutrients.  相似文献   

3.
The objective of this study was to determine more indepth physiological and antioxidant responses in two Medicago ciliaris lines (a salt-tolerant line TNC 1.8 and a salt-sensitive line TNC 11.9) with contrasting responses to 100 mM NaCl. Under salt stress, both lines showed a decrease in total biomass and in the growth rate for roots, but TNC 1.8 was less affected by salt than TNC 11.9 in that it maintained leaf growth even in the presence of added salt. In both lines, salt stress mainly affected micronutrient status (Fe, Mn, Cu and Zn) rather than K nutrition, but the tolerant line TNC 1.8 accumulated more Na in leaves and less in roots compared with TNC 11.9. Salt stress decreased total soluble sugars (TSS) in all organs of the sensitive line TNC 11.9, whereas TSS was only reduced in roots of the tolerant line. The salt-induced drop in growth was linked to an increase in lipid peroxidation in roots of both lines and in leaves of the sensitive line. The salt-tolerant line TNC 1.8 was more efficient at managing salt-induced oxidative damage in leaves and to a lesser extent in roots than the salt-sensitive line TNC 11.9, by preserving higher phenolic compound and superoxide dismutase levels in both organs.  相似文献   

4.
Iron deficiency in higher plants causes accumulation of salts of organic acids in the roots, the most characteristic being citrate. We show that citrate and malate accumulate in beans (Phaseolus vulgaris L. var Prélude), not because of a lack of the iron-containing enzyme aconitase (EC 4.2.1.3), but in close coupling to the extrusion of protons during rhizosphere acidification, one of the `Fe-efficiency' reactions of dicotyledonous plants. When proton excretion is induced in roots of control bean plants by addition of fusicoccin, only malate, not citrate, is accumulated. We propose that iron deficiency induces production of organic acids in the roots, which in beans leads to both proton excretion and an increased capacity to reduce ferric chelates via the induced electron transfer system in the root epidermis cells.  相似文献   

5.
Hormonal changes in two Medicago ciliaris lines differing in salt tolerance (TNC 1.8 being more tolerant than TNC 11.9) were studied as possible regulators of growth and symbiotic nitrogen fixation (SNF). After 21 days of saline treatment (100 mM NaCl), four major phytohormones (abscisic acid, ABA; the cytokinin trans-zeatin, t-Z; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were analysed. Salinity differently affected hormone concentrations in vegetative tissues and nodules in both lines. Principal component analysis (PCA) revealed that growth and SNF parameters under salinity were inversely correlated to the amount of reduced nitrogen (Nred) allocated to the roots and nodules, to the sucrolytic activity (TSA) in the roots, and to the t-Z and ABA concentration in the nodules. However, those parameters were positively associated along PC1 to the Nred and TSA in the leaves and all the hormones analysed in the roots. Interestingly, the ACC concentration of all organs was positively associated with vegetative growth and with SNF under salinity, as a putative regulator of the symbiotic-parasitic relation with the bacteria. The influence of hormonal changes in relation to plant growth, SNF and symbiotic relation is discussed.  相似文献   

6.
The effect of salt stress on nitrogen fixation, in relation to sucrose transport towards nodules and other sink organs and the potential of sucrose breakdown by nodules, was investigated in two lines of Medicago ciliaris. Under salt stress conditions, the two lines showed a decrease of total biomass production, but TNC 1.8 was less affected by salt than TNC 11.9. The chlorophyll content was not changed in TNC 1.8, in contrast to TNC 11.9. Shoot, root, and nodule biomass were also affected in the two lines, but TNC 1.8 exhibited the higher potentialities of biomass production of these organs. Nitrogen fixation also decreased in the two lines, and was more sensitive to salt than growth parameters. TNC 1.8 consistently exhibited the higher values of nitrogen fixation. Unlike nodules, leaves of both lines were well supplied in nutrients with some exceptions. Specifically, the calcium content decreased in the sensitive line leaves, and the nodule magnesium content was not changed in either line. The tolerant line accumulated more sodium in its leaves. The two lines did not show any differences in the nodule sodium content. Sucrose allocation towards nodules was affected by salt in the two lines, but this constraint did not seem to affect the repartition of sucrose between sink organs. Salt stress induced perturbations in nodule sucrolytic activities in the two lines. It inhibited sucrose synthase, but the inhibition was more marked in TNC 11.9; alkaline/neutral activity was not altered in TNC 1.8, whereas it decreased more than half in TNC 11.9. Thus, the relative tolerance of TNC 1.8 to salt stress could be attributed to a better use of these photoassimilates by nodules and a better supply of bacteroids in malate. The hypothesis of a competition for sucrose between nodules and other sink organs under salt stress could not be verified.  相似文献   

7.
Iron deficiency is a yield-limiting factor with major implications for field crop production in one-third of the world's agricultural areas, especially those with high soil CaCO(3). In the present work, a two-dimensional gel electrophoresis proteomic approach was combined with a study on the riboflavin synthesis pathway, including qPCR and riboflavin determination, to investigate Fe-deficiency responses in Medicago truncatula plants grown with and without CaCO(3). Iron deficiency caused a de novo accumulation of DMRLs and GTPcII, proteins involved in riboflavin biosynthesis, as well as marked increases in root riboflavin concentrations and in the expression of four genes from the riboflavin biosynthetic pathway. Two novel changes found were the increased accumulation of proteins related to N recycling and protein catabolism. Other identified changes were consistent with previously found increases in glycolysis, TCA cycle, and stress-related processes. All effects were more marked in the presence of CaCO(3). Our results show that the riboflavin biosynthesis pathway was up-regulated at the genomic, proteomic, and metabolomic levels under both Fe-deficiency treatments, especially in the presence of CaCO(3). Results also indicate that N recycling occurs in M. truncatula upon Fe deficiency, possibly constituting an additional anaplerotic N and C source for the synthesis of secondary metabolites, carboxylates, and others.  相似文献   

8.
Root exudation from Hordeum vulgare in response to localized nitrate supply   总被引:2,自引:0,他引:2  
Root proliferation as a response to exploit zones of nutrient enrichment in soil has been demonstrated for a wide range of plant species. However, the effectiveness of this as a strategy to acquire nutrients is also dependent on interactions with the soil microbial community. Specifically, C-flow from roots modifies microbial activity and probably the balance between nutrient mineralization and immobilization processes in the rhizosphere. In this study, near-natural abundance 13C-labelling and gene-reporter methods were applied to determine the effects of uneven nitrate supply to roots of Hordeum vulgare on assimilate partitioning and root exudation. Plants were initially grown in uniform nitrate supply in split-root, sand microcosms after which one treatment continued to receive uniform supply, and the other received nitrate to one root compartment only. At the time of imposing the treatments, the CO2 supplied to the plants was switched to a cylinder source, providing a distinct delta13C-signature and allowing the fate of new assimilate within the plants to be determined. The labelling approach allowed quantification of the expected preferential allocation of new C-assimilate to roots in enriched nitrate, prior to any measurable effect on whole biomass or root architecture. Biosensor (lux-marked Pseudomonas fluorescens 10586 pUCD607) bioluminescence, quantified spatially by CCD imaging, demonstrated that root exudation was significantly increased for roots in enriched nitrate. This response of root exudation, being primarily associated with root apices and concurrent with enhanced assimilate supply, strongly suggests that C-flow from roots is an integral component of the proliferation response to nitrate.  相似文献   

9.
10.
Ohwaki  Y.  Sugahara  K. 《Plant and Soil》1997,189(1):49-55
A chickpea cultivar, K-850, acidified the nutrient solution in response to iron deficiency, with subsequent re-greening of chlorotic leaves. No recovery of chlorosis was observed when the nutrient solution was buffered at a pH 6.3. During the period of acidification induced by iron deficiency, the roots of K-850 exuded more carboxylic acids than when supplied with sufficient iron. However, the rate of extrusion of protons was much higher than the rate of exudation of carboxylic acids during the acidification period. The extrusion of protons was inhibited by the addition of vanadate at the beginning of the decrease in pH. It appeared that acidification of the solution in response to iron deficiency was mediated by a proton-pumping ATPase, located at the plasma membrane. The presence of cations in the solution was essential for the extrusion of protons under iron deficiency, but the species of cation made no significant difference to the rate of extrusion of protons from roots. Therefore, we concluded that non-specific H+/cation antiport was involved in the acidification process.  相似文献   

11.
Iron (Fe) deficiency is one of the major environmental stresses affecting plant production in the world. The selection of tolerant genotypes is considered an effective remediation strategy for this stress. The present study was carried out in order to investigate the biodiversity within Medicago truncatula plants in response to Fe deficiency, to identify tolerant genotypes and to assess the main tolerance mechanisms. To do this, a screening test was performed on 20 M. truncatula genotypes cultivated in minimal medium. Biometric and physiological markers were analyzed, including plant biomass, chlorophyll and root architecture. Results showed a biodiversity among the 20 genotypes. Interestingly, Fe deficiency tolerance was highest in TN8.20 and A17 genotypes. However, the lowest tolerance behavior was observed in TN1.11 and TN6.18. In order to investigate the main tolerance mechanisms, an experiment was conducted in the hydroponic system on already selected genotypes. Assessment of Fe deficiency tolerance was performed mainly on plant growth parameters, Fe (III)-chelate-reductase activity, rhizosphere acidification and antioxidant system defense. The relative better tolerance of A17 and TN8.20 to Fe deficiency was positively correlated with their capacity to maintain higher Fe-acquisition efficiency in roots via rhizosphere acidification and the stimulation of Fe (III)-chelate-reductase activity. Moreover, tolerant genotypes showed the lowest decreases in chlorophyll content and photosynthetic activity (CO2 assimilation) compared to the sensitive ones. The efficiency of antioxidant capacity of the tolerant genotypes was revealed in stimulation of catalase (CAT) and peroxidase (POX) activities as well as accumulation of polyphenols, leading to the maintenance of cell integrity under Fe deficiency.  相似文献   

12.
Rengel  Z.  Römheld  V. 《Plant and Soil》2000,222(1-2):25-34
Tolerance to Zn deficiency in wheat germplasm may be inversely related to uptake and transport of Fe to shoots. The present study examined eight bread (Triticum aestivum) and two durum (T. turgidum L. conv. durum) wheat genotypes for their capacity to take up and transport Fe when grown under either Fe or Zn deficiency. Bread wheat genotypes Aroona, Excalibur and Stilleto showed tolerance to Zn and Fe deficiency, while durum wheat genotypes are clearly less tolerant to either deficiency. Roots of bread wheats tolerant to Zn deficiency exuded more phytosiderophores than sensitive bread and durum genotypes. Greater amounts of phytosideophores were exuded by roots grown under Fe than Zn deficiency. A relatively poor relationship existed between phytosiderophore exudation or the Fe uptake rate and relative shoot growth under Fe deficiency. At advanced stages of Zn deficiency, genotypes tolerant to Zn deficiency (Aroona and Stilleto) had a greater rate of Fe uptake than other genotypes. Zinc deficiency depressed the rate of Fe transport to shoots in all genotypes in early stages, while advanced Zn deficiency had the opposite effect. Compared with Zn-sufficient plants, 17-day-old Zn-deficient plants of genotypes tolerant to Zn deficiency had a lower rate of Fe transport to shoots, while genotypes sensitive to Zn deficiency (Durati, Yallaroi) had the Fe transport rate increased by Zn deficiency. A proportion of total amount of Fe taken up that was transported to shoots increased with duration of either Fe or Zn deficiency. It is concluded that greater tolerance to Zn deficiency among wheat genotypes is associated with the increased exudation of phytosiderophores, an increased Fe uptake rate and decreased transport of Fe to shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R 2 = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.  相似文献   

14.
Calvo  Olga C.  Franzaring  Jürgen  Schmid  Iris  Fangmeier  Andreas 《Plant and Soil》2019,435(1-2):127-142
Plant and Soil - Citrate secretion is a kind of typical strategy for plant against aluminum (Al) toxicity. However, the signaling process in Al-activated citrate secretion needs to be clarified....  相似文献   

15.
A series of hydroponic experiments and an agar culture experiment were carried out to investigate aluminum (Al) accumulation and translocation in two rice (Oryza sativa L.) cultivars (Kasalath and Koshihikari) that differ in Al resistance. Al-resistance mechanisms, including Pi exudation under Al stress and pH shifts in the rhizosphere, were also studied. Al content in rice shoots was 41 mg kg−1 on average and did not differ between the two cultivars, which demonstrated that the rice cultivars were not Al accumulators. The majority of Al (95–97%) accumulated in roots. Al content in roots in the resistant cultivar (Koshihikari) was lower than that in the sensitive cultivar (Kasalath), which indicated that Al-exclusion mechanisms were mainly acting in rice. However, the rate of Pi exudation from the whole root or root tips was very low in both cultivars and was not significantly influenced by Al exposure, and thus seemed not to be the main Al-resistance mechanism. On the other hand, experiments with pH-buffered solution and color changes following culture in agar medium containing bromocresol purple revealed that the Al-induced pH increase could not explain the high Al resistance of rice. In addition, the Al content in shoots of Koshihikari was lower after the formation of iron plaque on the root surface, whereas that of Kasalath was not lower. These results suggested that rice roots cell wall components or root surfaces such as iron plaque, rather than pH changes and/or root exudates including organic acids and phosphate, play important roles in Al resistance in rice.  相似文献   

16.
Sunflower (Helianthus annuus L.) has been classified as a Fe-efficient species; however differences have been reported in susceptibility to Fe deficiency stress among cultivars and inbred lines. This paper reports research on responses of inbred lines to Fe deficiency stress (release of protons and root capacity to reduce Fe). When plants were grown individually in aerated nutrient solution without Fe the new selected inbred lines were classified as: a) Lines with good Fe deficiency stress response (RHA 271, RHA 273 and RHA 274); b) Lines that did not lower root external pH (HA 89 and RHA 299), one with very low reducing capacity (HA 89) and the other with reducing capacity (RHA 299); and c) One segregating line (RHA 276) from which two sister lines were selected. When a buffer (5 mM MES, 2-(N- morpholino) ethanesulfonic acid) was added to the root nutrient solution without Fe during growth, the reducing capacity of Fe-inefficient lines was higher for buffered than for unbuffered roots. Therefore, differences among lines for reducing capacity depend on experimental conditions.  相似文献   

17.
18.
In order to explore the relationship between leaf hormonal status and source-sink relations in the response of symbiotic nitrogen fixation (SNF) to salt stress, three major phytohormones (cytokinins, abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid), sucrose phosphate synthase activity in source leaves and sucrolytic activities in sink organs were analysed in two lines of Medicago ciliaris (salt-tolerant TNC 1.8 and salt-sensitive TNC 11.9). SNF (measured as nitrogenase activity and amount of N-fixed) was more affected by salt treatment in the TNC 11.9 than in TNC 1.8, and this could be explained by a decrease in nodule sucrolytic activities. SNF capacity was reflected in leaf biomass production and in the sink activity under salinity, as suggested by the higher salt-induced decrease in the young leaf sucrolytic activities in the sensitive line TNC 11.9, while they were not affected in the tolerant line TNC 1.8. As a consequence of maintaining sink activities in the actively growing organs, the key enzymatic activity for synthesis of sucrose (sucrose phosphate synthase) was also less affected in the mature leaves of the more tolerant genotype. Ours results showed also that the major hormone factor associated with the relative tolerance of TNC 1.8 was the stimulation of abscisic acid concentration in young leaves under salt treatment. This stimulation may control photosynthetic organ growth and also may contribute to a certain degree in the maintenance of coordinated sink-source relationships. Therefore, ABA may be an important component which conserves sucrose synthesis in source leaves.  相似文献   

19.
Ribonucleotide reductase (RNR) is an essential enzyme required for DNA synthesis and repair. Although iron is necessary for class Ia RNR activity, little is known about the mechanisms that control RNR in response to iron deficiency. In this work, we demonstrate that yeast cells control RNR function during iron deficiency by redistributing the Rnr2-Rnr4 small subunit from the nucleus to the cytoplasm. Our data support a Mec1/Rad53-independent mechanism in which the iron-regulated Cth1/Cth2 mRNA-binding proteins specifically interact with the WTM1 mRNA in response to iron scarcity and promote its degradation. The resulting decrease in the nuclear-anchoring Wtm1 protein levels leads to the redistribution of the Rnr2-Rnr4 heterodimer to the cytoplasm, where it assembles as an active RNR complex and increases deoxyribonucleoside triphosphate levels. When iron is scarce, yeast selectively optimizes RNR function at the expense of other non-essential iron-dependent processes that are repressed, to allow DNA synthesis and repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号