首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
陈福坤  张丽微  陈雷  邓利 《广西植物》2018,38(6):755-761
为探索柊叶和象草在人工湿地中的应用及其净化机理,该研究以柊叶和象草为人工湿地植物分别构建了波式潜流人工湿地系统,分析了柊叶和象草波式潜流人工湿地对生活污水中COD_(cr)、TN和TP的净化效果,观察了柊叶和象草两种植物在不同季节的生长状况。结果表明:经过15个月的连续运行,在表面水力负荷约0.3 m·d~(-1)的条件下,柊叶和象草波式潜流人工湿地平均去除率是COD_(cr)分别为66.1%和70.1%,TN分别为60.4%和63.7%,TP分别为74.1%和75.1%。两种植物生长良好,根系发达,象草的地上生物量是柊叶的2.1倍,地下生物量相当;冬季象草生长缓慢,柊叶部分叶片的四周干枯,但二者都不会枯亡。这说明两个人工湿地对COD_(cr)、TN和TP都具有较好的去除效果,但无显著性差异,柊叶和象草能明显提高潜流人工湿地的净化效果。  相似文献   

2.
闽江河口湿地土壤全磷高光谱遥感估算   总被引:3,自引:1,他引:2  
章文龙  曾从盛  高灯州  陈晓艳  林伟 《生态学报》2015,35(24):8085-8093
磷是湿地生态系统必需和限制性元素,利用高光谱遥感数据对其进行估算对实现湿地土壤磷素快速和准确定量具有重要意义。选取闽江河口湿地作为研究区,于2013年5月,采集16个土壤剖面80个样本作为估算与验证模型样本;基于光谱指数建立土壤全磷(TP)含量估算模型,其中光谱指数包括原始光谱反射率(R)、比值土壤指数(RSI)、归一化土壤指数(NDSI)和有机质诊断指数(OII)。此外进一步分析反射光谱与不同形态磷,TP与有机质之间关系,以期初步揭示河口湿地土壤TP估算的机理。研究结果表明,闽江河口湿地土壤TP含量与R相关系数较高的区域分布在360-560 nm,并在406 nm处达到最大值-0.816;光谱指数RSI(R_(430),R_(830))、RSI(R_(460),R_(810))、RSI(R_(560),R_(580))、NDSI(R_(430),R_(830))、NDSI(R_(460),R_(830))、NDSI(R_(560),R_(580))和OII(R_(446))与土壤TP含量均有较高的相关系数,能较好的用于TP含量的估算;各估算模型决定系数(r~2)和均方根误差(RMSE)分别在0.657-0.805和0.052-0.067之间;验证模型r~2和RMSE分别在0.606-0.893和0.037-0.044之间。分潮滩建立TP含量估算模型是可行的,并且能提高部分光谱指数的估算精度。土壤TP含量的估算精度与磷素的组成有关,其中与铁吸附态磷关系较为密切,钙吸附态和铝吸附态磷关系较弱。土壤TP与有机质和氧化还原环境的存在密切关系可能是湿地土壤TP含量估算的重要机理。  相似文献   

3.
不同生境条件下滨海芦苇湿地C、N、P化学计量特征   总被引:3,自引:0,他引:3  
为阐明不同生境对黄河三角洲滨海芦苇湿地土壤和植物碳(C)氮(N)磷(P)含量及生态化学计量特征的影响,选取新生湿地和退耕湿地两种湿地类型为研究对象,对土壤和植物体C、N、P含量及其化学计量特征进行研究。研究表明:1)退耕芦苇湿地土壤TC、TN的含量明显增加,TP的含量变化不大。2)新生湿地和退耕湿地土壤R_(C、N、P)分别为42.6:1.6:1、71.2:2.0:1,R_(NP)低于全球平均水平(13.1)和我国平均水平(5.2),土壤表现为N限制。新生湿地土壤剖面中,R_(CN)和R_(CP)变化剧烈;R_(NP)值随深度的增加而减小;退耕湿地土壤R_(C、N、P)值规律性较好,R_(CN)随深度的增加而变大,R_(CP)和R_(NP)值随深度的增加而减小。3)新生湿地和退耕湿地中芦苇整株R_(CN)、R_(CP)和R_(NP)平均值分别为78.2、1753、22.4;67.0、1539、23.0。开垦活动可以降低芦苇植物体R_(CN)和R_(CP)值,但由于芦苇植物体本身对R_(NP)的约束性较高,对R_(NP)值的影响不大,芦苇植株R_(NP)约为23。以上结论可以为黄河三角洲国家级自然保护区正在进行的湿地保护与恢复工作提供借鉴和参考。  相似文献   

4.
亚热带区4种林地土壤微生物生物量碳氮磷及酶活性特征   总被引:4,自引:0,他引:4  
张雅茜  方晰  冼应男  王振鹏  项文化 《生态学报》2019,39(14):5326-5338
在位于亚热带丘陵区的长沙县大山冲林场选取地域毗邻、环境条件(立地、土壤、气候)基本一致的杉木人工林(CL)和3种次生林:马尾松-柯(又名石栎)针阔混交林(PM-LG)、南酸枣落叶阔叶林(CA)、柯-青冈常绿阔叶林(LG-CG),每种林地随机设置5个20 m×20 m的样地,分别采集表层(0—15 cm)和亚表层(15—30 cm)土壤样品,测定土壤微生物生物量碳(B_C)、氮(B_N)、磷(B_P)和蔗糖酶(INV)、脲酶(URE)、酸性磷酸酶(ACP)、过氧化氢酶(CAT)活性,分析4种林地土壤微生物生物量和酶活性及其与土壤化学性质的关系。结果表明:表层和亚表层土壤B_C、B_N、B_P和ACP活性依次为:CA LG-CG PM-LG CL,INV和URE活性依次为:LG-CG CA PM-LG CL,CAT活性依次为:CA PM-LG LG-CG CL,说明森林植被恢复对土壤微生物生物量和酶活性有明显的促进作用。通径分析表明,土壤B_C、B_N、B_P的直接影响因素和主要影响因素分别为SOC和TN/TP,TN和TN/TP,TP和SOC/TP,而TN/TP与B_C之间,TN与B_N之间具有较强的负相关;INV、ACP活性的直接影响因素主要是TN、TN/TP,其中TN/TP与INV、ACP活性具有较强的负相关;URE、CAT活性分别为B_P/TP和B_P,B_C/SOC和SOC,其中B_P与URE活性具有较强的负相关,B_C/SOC、SOC两者与CAT活性具有较强的正相关。此外,土壤B_C、B_N、B_P以及INV、URE、ACP、CAT活性的剩余余项通径系数较低,说明土壤化学性质对土壤微生物生物量,以及土壤化学性质和微生物生物量对土壤酶活性具有较大的影响。土壤B_C、B_N、B_P之间及其与土壤酶活性呈显著正相关。  相似文献   

5.
Wetlands provide a large pool of organic matter and nutrients, and are important for maintaining material cycle balances in terrestrial ecosystems, and also help retard climate change. Land use changes in wetlands have greatly disturbed the natural evolution of wetland ecosystems. Wetland drainage and reclamation alters the physical, chemical and biological conditions of the wetland, thus significantly disturbing the material cycles, leading to significant changes in the biogeochemical processes of carbon, nitrogen and phosphorus in the wetland. The wetlands in the Sanjiang Plain are the largest area of fresh wetlands in China. However, the area has experienced major land uses changes since the 1950s; areas of the wetland have been drained and converted to arable land. Some studies have been conducted into the effects of land use change on material cycles in the Sanjiang Plain wetlands but few reports have discussed the C/N and C/P ratios and pH values as indicators of wetland degradation due to land use changes. We selected eight land uses: humus marsh (HM), marshy meadow (MM), drained humus marsh (DHM), drained marshy meadow (DMM), tillage land (TL), abandoned land (AL), natural secondary forest (NSF) and artificial forest (AF), in the Honghe area of the Sanjiang Plain. We studied changes in the total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), C/N and C/P ratios and pH values in topsoil (0–20 cm) of these eight different land uses. The possible mechanisms underlying the changes, and the significance of the C/N and C/P ratios as indicators of soil quality were also discussed. In the natural wetland, the TOC, TN and TP concentrations in the soil were high, with values of 203.5 g/kg, 20.2 g/kg and 1.44 g/kg, respectively, in HM; and 59.2 g/kg, 5.28 g/kg and 0.83 g/kg, respectively, in MM. Drainage of the HM has led to decreases in the TOC, TN and TP concentrations of about 50%. Significant decreases were also observed in TOC, TN and TP for NSF and AF compared to HM. Drained MM led to decreases in the TOC and TN of about 45%, but had little effect on TP. Marshy meadow that had been drained for more than 10 years experienced an exponential decline in TOC, TN and TP, with decreases of more than 60% for TOC and TN, and 20% for TP. However, after being abandoned for a short time (5 years), the TOC, TN and TP concentrations in soil experienced little change because poor water conditions combined with low productivity led to a large loss of soil organic matter. Land use change in the marsh areas has led to a decrease in C/N and C/P ratios of the soil, which are positively related to TOC and TN with different land uses (P < 0.05). Marsh reclamation has led to decreasing C/N and C/P ratios in soil and increasing pH values, which are negatively related to TOC, TN and TP (P < 0.05). Changes in carbon, nitrogen and phosphorus in soil with different land uses were mainly regulated by water-heat conditions and microbial activity, while the C/N and C/P ratios were mainly regulated by substrate availability. Our results suggest that C/N and C/P ratios and the pH value could be used as indicators to evaluate the quality and nutrient status of wetland soil under different land uses.  相似文献   

6.
为了探讨林地覆盖雷竹林退化机理,给退化雷竹林恢复提供理论参考,对不同覆盖年限(CK、1、3 a 和6 a) 雷竹林土壤微生物区系组成和生物量碳(Cmic)、氮(Nmic)、磷(Pmic)等特征因子进行了测定,并分析了其与土壤养分的制约性关系。结果表明:(1) 雷竹林土壤微生物以细菌为主,真菌次之,放线菌最少,分别占土壤微生物总量的90.11%-98.03%、1.04%-9.22%和0.67%-1.37%。随覆盖年限增加,细菌、放线菌比率呈下降趋势,真菌比率呈上升趋势;土壤微生物总数、细菌和放线菌数量及Cmic、Nmic、Pmic均呈先升高后降低的变化趋势,试验雷竹林间差异极显著,真菌数量总体呈极显著升高趋势。(2)雷竹林土壤微生物特征因子与土壤有机质(SOM)、全氮(TN)、全磷(TP)、碱解氮(Available nitrogen, AN)和pH均呈显著或极显著相关,其中,CK和覆盖1 a、3 a雷竹林土壤微生物特征因子与土壤养分主要呈正相关,与pH呈负相关,而覆盖6 a雷竹林则相反。(3)不同覆盖年限雷竹林土壤养分与土壤微生物的制约性关系存在一定的差异,CK雷竹林土壤SOM、TN、AN、速效钾(AK)和pH主要影响土壤Cmic、Nmic和细菌,覆盖1 a雷竹林土壤SOM、TN、TP和AK主要影响土壤Pmic、放线菌和细菌,覆盖3 a雷竹林土壤SOM、TN、速效磷(AP)和AN主要影响土壤Nmic、放线菌和真菌,覆盖6 a雷竹林土壤SOM、TN和pH主要影响土壤Nmic、真菌。研究表明:长期覆盖雷竹林土壤细菌、放线菌数量与比例明显降低,真菌数量与比例明显提高,土壤养分与土壤微生物的制约性作用关系会发生较为明显变化,产生土壤障害,这是覆盖雷竹林退化的主要原因之一。  相似文献   

7.
The Hani terrace paddyfield in Yunnan Province, China is categorized as a ‘constructed wetland’ under the Lamsar Convention classification. The Hani terrace paddyfield ranges from an altitude of 144 to 2000 m above sea level (ASL) in the southern slopes of the Ailao Mountains, angling down at a range of 15° to 75°. In this study, we investigated the ecosystem of the terrace paddyfields in the Mengpin and Quanfuzhuang administrative villages located at the center of the cultural heritage conservation district in the Hani terrace paddyfield. The Hani terrace paddyfield ecosystem structure is “forest-village-terrace paddyfield-river” in the order of descending altitude. Soil and water samples were sequentially taken from forests, villages and the terrace paddyfields to be able to study the vertical characteristics of Hani's terrace paddyfields. PO4-P and NH3-N in water were measured to test for water contamination. Seven soil nutrient factors were tested, including organic material (OM), char and nitrogen ratio (C/N), pH, total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), and available potassium (AK). Soil quality was also evaluated using the characteristics of the soil nutrient factors. Vertical changes in the landscape, wetland types, wetland plants, hydrology and soil nutrients were characterized. Results showed that: (1) Hani's terrace paddyfield can be divided into five types of wetlands; the rice varieties and cultivation patterns vary in each type of wetland. (2) Hani's terrace paddyfield has a great capacity for water conservation and a strong ability to purify contaminants. The impoundage of Hani's terrace paddyfield is about 5050 m3/hm2. Contaminants in the terrace paddyfield soils decrease exponentially with the decline in altitude. (3) Comparison of soil quality in five different land use types indicates decreasing soil quality from forest to terrace land to terrace paddyfield to water source. Except for headwater soil, single factors such as OM, TN and TP, and the comprehensive soil quality in individual sampling zones tend to increase with altitude elevation. Comprehensive soil quality in the Quanfuzhuang sampling zone is better than in the Mengpin sampling zone. Finally, a comparison of Hani's terrace paddyfield with plain paddyfields and natural wetlands highlighted the vertical characteristics of Hani's terrace paddyfield. __________ Translated from Acta Ecologica Sinica, 2006, 26(7): 2115–2124 [译自: 生态学报]  相似文献   

8.
To identify the seasonal pattern of nitrogen (N) and phosphorus (P) limitation of phytoplankton in four different lakes, biweekly experiments were conducted from the end of March to September 2011. Lake water samples were enriched with N, P or both nutrients and incubated under two different light intensities. Chlorophyll a fluorescence (Chla) was measured and a model selection procedure was used to assign bioassay outcomes to different limitation categories. N and P were both limiting at some point. For the shallow lakes there was a trend from P limitation in spring to N or light limitation later in the year, while the deep lake remained predominantly P limited. To determine the ability of in-lake N:P ratios to predict the relative strength of N vs. P limitation, three separate regression models were fit with the log-transformed ratio of Chla of the P and N treatments (Response ratio = RR) as the response variable and those of ambient total phosphorus:total nitrogen (TN:TP), dissolved inorganic nitrogen:soluble reactive phosphorus (DIN:SRP), TN:SRP and DIN:TP mass ratios as predictors. All four N:P ratios had significant positive relationships with RR, such that high N:P ratios were associated with P limitation and low N:P ratios with N limitation. The TN:TP and DIN:TP ratios performed better than the DIN:SRP and TN:SRP in terms of misclassification rate and the DIN:TP ratio had the highest R2 value. Nitrogen limitation was predictable, frequent and persistent, suggesting that nitrogen reduction could play a role in water quality management. However, there is still uncertainty about the efficacy of N restriction to control populations of N2 fixing cyanobacteria.  相似文献   

9.
In the 1990s a sharp decrease in nitrogen loading occurred in Estonian rivers, bringing about a reduction of the nitrogen-to-phosphorus ratio (N:P ratio) in the large shallow lakes, Peipsi (3,555 km2, mean depth 7.1 m) and Võrtsjärv (270 km2, 2.8 m). The average mass ratio of total nitrogen (TN) and total phosphorus (TP) in Võrtsjärv (45) was about twice as high as that in Peipsi (22). In Peipsi, the N2-fixing Gloeotrichia echinulata, Aphanizomenon flos-aquae and Anabaena species prevailed in the summer phytoplankton, while in Võrtsjärv the dominant cyanobacteria were Limnothrix planktonica, L. redekei and Planktolyngbya limnetica, which cannot fix N2; the main N2-fixing taxa Aphanizomenon skujae and Anabaena sp. seldom gained dominance. In May–October the critical TN:TP mass ratio, below which N2-fixing cyanobacteria (Nfix) achieved high biomasses, was ~40 in Võrtsjärv and ~30 in Peipsi. The percentages of both total cyanobacteria (CY) and Nfix (CY% and Nfix%) in Peipsi achieved their maximum values at an N:P mass ratio at or below 20 for both TN:TP and Nmin:SRP. In Võrtsjärv, the TN:TP supporting a high Nfix% was between 30 and 40 and the Nmin:SRP supporting this high percentage was in the same range as that in Peipsi (<20), though the maximum Nfix% values in Võrtsjärv (69%) were much lower than in Peipsi (96%). The Nmin:SRP ratio explained 77% of the variability in Nfix% in May–October. The temperature dependence of Nfix% approximated to the maximum function type, with an upper limiting value at a certain water temperature, and this was most distinct in May–October. The critical TN:TP ratios obtained from our study (roughly 30 for Peipsi and 40 for Võrtsjärv) are much higher than the Redfield N:P mass ratio routinely considered (7). Our results represent valuable guidelines for creating effective management strategies for large shallow lakes. They provide a basis for stressing the urgent need to decrease phosphorus loading and to keep the in-lake P concentration low, and not to implement nitrogen reduction measures without a simultaneous decrease of phosphorus concentration.  相似文献   

10.
扎龙湿地位于黑龙江省西部、松嫩平原乌裕尔河下游,是我国北方同纬度地区最完整的湿地。于2012年春、夏、秋3季,对扎龙湿地6个代表性区域进行硅藻标本采集,经观察鉴定,发现硅藻植物140个分类单位,包括121种19变种,隶属于2纲6目9科30属。羽纹纲物种较丰富,占总种类数的95%。硅藻植物群落呈现明显的季节演替,秋季硅藻种类丰富度及相对丰度明显高于春、夏两季,优势种多以淡水、半咸水、喜弱碱的种类为主,优势种与水体的盐度和酸碱度存在一定的响应关系。应用典范对应分析(Canonical Correspondence Analysis,CCA)探讨硅藻植物群落变化与环境因子之间的关系。CCA结果显示在扎龙湿地中,水温、电导率、pH、溶解氧是影响硅藻群落结构变化的主要因素,此外总氮、总磷也是硅藻群落季节演替的重要驱动因子。结合硅藻植物多样性指数和硅藻商对扎龙湿地水质进行综合评价,结果显示扎龙湿地整体为中-寡污带水体,部分水域水质较清洁,少数样点受人为因素影响,呈轻污染。  相似文献   

11.
Soil carbon, nitrogen, and phosphorus cycles are strongly interlinked and controlled through biological processes, and the phosphorus cycle is further controlled through geochemical processes. In dryland ecosystems, woody encroachment often modifies soil carbon, nitrogen, and phosphorus stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations following woody encroachment by taking spatially explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by Prosopis glandulosa (an N2 fixer) and other woody species during the past century in southern Texas, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns throughout the soil profile following woody encroachment, while TP increased slower than SOC and TN in topmost surface soils (0–5 cm) but faster in subsurface soils (15–120 cm). Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in subsurface soils. The encroachment of woody species dominated by N2‐fixing trees into this P‐limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the soil profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic mechanisms controlling C and N vs. P accumulation following vegetation change may vary with depth. Our findings suggest that efforts to incorporate effects of land cover changes into coupled climate–biogeochemical models should attempt to represent C‐N‐P imbalances that may arise following vegetation change.  相似文献   

12.
三江平原不同湿地类型土壤活性有机碳组分及含量差异   总被引:14,自引:0,他引:14  
肖烨  黄志刚  武海涛  吕宪国 《生态学报》2015,35(23):7625-7633
土壤活性有机碳对土壤干扰的反应较快,是土壤有机碳早期变化的敏感性指标。近50年来,三江平原湿地土壤有机碳库受农事活动影响较大。为了探讨不同湿地类型土壤活性有机碳主要组分土壤可溶性有机碳(Dissolved organic carbon,DOC)、微生物量碳(Microbial biomass carbon,MBC)和易氧化有机碳(Easily oxidized organic carbon,EOC)的分布差异及主要影响因子,选择了三江平原洪河自然保护区4种典型的湿地类型(小叶章+沼柳湿地、小叶章湿地、毛苔草湿地和芦苇湿地)为研究对象。分析了不同湿地类型土壤可溶性有机碳,微生物量碳和易氧化有机碳在0—30 cm土层内的分布特征和分配比例及其与有机碳、土壤养分和酶活性指标(蔗糖酶、纤维素酶和过氧化氢酶)之间的相关关系。结果表明:(1)4种湿地类型土壤DOC、MBC和EOC含量均随土层深度的增加而减少。不同湿地类型之间土壤活性有机碳含量在0—30 cm土层内存在显著性差异(P0.05),相对于长期淹水的毛苔草湿地和芦苇湿地而言,未淹水的小叶章+沼柳湿地和小叶章湿地具有较高的DOC,MBC和EOC含量。(2)土壤DOC、MBC和EOC占有机碳比例分别为0.27%—0.63%,1.27%—5.94%和19.63%—41.25%。土壤DOC所占比例呈先增后减的变化趋势,最大的比例均出现在10—20 cm。MBC所占比例在土壤剖面上则未表现出一致的变化规律,而EOC所占比例则随土层深度的增加而逐渐减少。(3)土壤DOC占SOC比例以小叶章湿地最高,MBC和EOC占SOC的比例则以小叶章+沼柳湿地最高。而长期淹水的毛苔草湿地和芦苇湿地则具有更低的DOC,MBC和EOC比例。(4)综合分析表明,4种湿地类型土壤DOC,MBC和EOC两两之间存在极显著相关性关系,它们除了与碳氮比相关性不显著外,与土壤有机碳,全氮,全磷养分和酶活性指标间相关性均达到极显著水平,尤其是与有机碳和全氮的相关性系数更高,此外DOC与纤维素酶,MBC与过氧化氢酶相关性更大。由此可见,土壤碳氮磷养分和酶活性是影响土壤活性有机碳组分分布的重要因素。  相似文献   

13.
刘倩  赵娥  王克焕  熊雄  吴辰熙 《水生生物学报》2022,46(12):1797-1806
研究以拉萨市拉鲁湿地及其相连干渠和茶巴朗湿地水体为研究对象, 分别于2020年8月(夏季)和2021年4月(春季)各采集22个水样, 测定水体氮磷营养盐和高锰酸盐指数, 分析了夏季和春季湿地的水环境特征和水质净化能力。结果表明, 拉鲁湿地和茶巴朗湿地由于流域人为污染水平不同进水水质存在差异, 拉鲁湿地进水水质主要受氮磷营养盐影响, 茶巴朗湿地水质主要受耗氧有机物影响。两湿地对水质都具有净化作用, 不同季节湿地对不同污染物的去除效果也有所差异。夏季, 拉鲁湿地对TN、NH3-N、NO3-N、TP和SRP的最大去除率分别为75.0%、65.2%、89.5%、82.2%和35.3%。茶巴朗湿地对TN、NH3-N、NO3-N、TP和SRP的去除率分别为60.7%、73.5%、12.7%、35.9%和5.0%。夏季两湿地对CODMn均未表现出去除作用。春季, 拉鲁湿地对TN、NH3-N、NO3-N、TP、SRP和CODMn的最大去除率分别为35.2%、65.9%、56.8%、59.5%、62.3%和17.9%。茶巴朗湿地的水质净化效果较差, 对TN、NH3-N、NO3-N、TP、SRP和CODMn的去除率分别为2.2%、10.2%、11.3%、11.3%、9.0%和26.0%。湿地水生植物、湿地结构、特殊的水动力特征及水污染负荷都可能影响高原湿地的水质净化能力, 春季高原湿地较低的水温、植物丰度和水文条件可能会降低湿地对污染物的去除效果。  相似文献   

14.
赵雯  黄来明 《生态学报》2022,42(11):4415-4427
了解高寒地区不同土地利用类型下土壤养分化学计量特征及其影响因素可为评估脆弱生态系统土壤质量和功能提供参数。通过测定青海省东部24个样点0—30 cm土壤基本理化性质(pH、容重BD、孔隙度Ps、黏粒含量Cy、土壤含水量SWC、有机碳SOC、全氮TN、全磷TP、速效氮AN和速效磷AP),并提取各样点环境因子数据(年均温MAT、年均降雨量MAP、年均蒸发量Ea、植被归一化指数NDVI、海拔ALT、坡度SG、地表粗糙度SR、经度LON和纬度LAT),分析了农、林、草三种土地利用类型下土壤养分化学计量比分布特征及其影响因素。结果表明,农地土壤有机碳SOC和全氮TN含量显著低于林地和草地(P<0.05),而全磷TP和速效磷AP含量则相反,农、林、草地速效氮AN含量无显著差异(P>0.05)。农、林、草地不同深度土壤C∶N(平均值19.93,变异系数<16%)和AN∶AP(平均值2.73,变异系数<71%)较为稳定且无显著差异(P>0.05),而农地C∶P和N∶P(平均值分别为19.27和0.99)却显...  相似文献   

15.
The Everglades Nutrient Removal Project (ENRP) was a 1544 ha constructed wetland built by the South Florida Water Management District as part of Everglades restoration efforts. The limnology of this wetland is characterized over its 60-month operational history. The ENRP received agricultural runoff containing high levels of C, N, P and other dissolved constituents; had moderately high alkalinity with a circumneutral pH; and had low to moderate DO. The ENRP provided substantial treatment (concentration reduction from inflow to outflow) for Al, Fe, NH4, NOx, SRP, TP, TSS and turbidity (high-treatment variables), while Secchi depth increased markedly. These changes were judged biologically significant. Dissolved oxygen, and water temperature had well defined annual cycles, while some level of seasonality was noted for Al, alkalinity, Ca, conductivity, DOC, Fe, hardness, K, Mg, Mn, Na, NH4, pH, Secchi depth, SiO2, TOC, TN, turbidity, and TSS. The ENRP was P limited based on TN:TP molar ratios. Dissolved ions were dominated by Ca, Cl, Na, and HCO3; the stoichiometric balance of both major and minor ions was similar throughout the wetland. The downstream settling of TSS was associated with increased light penetration, but did not appear important in sediment accretion. The adsorption of P to Ca, and perhaps Al and Fe, precipitates is thought to have been an important nutrient removal mechanism. Although there was little net reduction in DOC, we speculate that some incoming material was degraded and replaced by new DOC produced within the wetland.  相似文献   

16.
Much of the lake shore in Lake Victoria is covered by extensive wetlands, often dominated by dense papyrus stands that extend out over the lake waters. These wetlands, their extension and management play a role in the physical, chemical and biological conditions of the inshore waters. Continuous transects along 180 km of shoreline together with spatial grids of sampling sites in eight bays were performed in the Ugandan inshore waters in order to analyze the relationships between the wetland characteristics and water quality. Measurements of extension of the wetland ecotones, water temperature (T), pH, Secchi disk depth (SD), dissolved oxygen (DO), total nitrogen (TN), total phosphorous (TP), dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and chlorophyll-a (CHL) were made in each sampling area. Data of T, pH and DO collected during the transects showed that the water characteristics of the bays differ from the open shoreline. Moreover, the magnitude of these physical–chemical differences is strongly conditioned by the dimension of the bordering wetlands. Bays with extensive wetlands ecotones were characterized by cooler, more acidic and poorly oxygenated waters. TN : TP ratios and especially DIN : SRP ratios decreased with the wetland presence along the coastline, showing a higher probability of N limitation in the inshore waters where large wetlands are present. Results point to denitrification processes in the wetland ecotones as the cause of this trend. The distribution of CHL was found to be highest in the presence of two significant point loading sources: a river (in Katonga Bay) and a major population centre (Kampala, in Murchison Bay). The reduction of external P loading is shown as an important step in the management of the eutrophication process of Lake Victoria inshore waters.  相似文献   

17.
Straightened channels and altered and drained adjacent riparian wetlands have adversely impacted streams and rivers throughout the US Midwest. This research investigated the biological connection and water quality of a 0.07 ha diversion wetland and adjacent stream at the Olentangy River Wetland Research Park in central Ohio. Before the flowthrough conditions were established, we demonstrated with mark and recapture techniques that the wetland already was a biorefuge for fish under extreme conditions; two species (Centrarchidae) captured in the stream before a total drawdown of the stream were found in the wetland a year later. In addition, water at the bottom remained at around 4 °C over the winter likely due to groundwater input, which possibly provided a warmer shelter for fish. Stream water quality of the lower section, downstream of the wetland outlet, generally improved with hydrologic pulsing in spring after flow-through reconnection due to the trapping of nutrients in the wetland. Mean removal per flood pulse for nitrate-nitrite, total nitrogen (TN), soluble reactive phosphorus (SRP), total phosphorus (TP) were 1.81 g-N m−2 per pulse, 1.02 g-N m−2 per pulse, 0.014 g-P m−2 per pulse, and 0.004 g-P m−2 per pulse, respectively. The wetland exported 2.8 g-C m−2 per pulse of organic carbon. A greater attenuation of NO3 and TP occurred in the marshy outlet channel section of the wetland than the open water section. The diversion wetland successfully removed nitrate and phosphorus during storm pulses in spring. Similar designs should be applied to other locations to examine their function under different climatic and hydrological conditions.  相似文献   

18.
Lake eutrophication is influenced by both anthropogenic and natural factors. Few studies have examined relationships between eutrophication parameters and natural factors at a large spatial scale. This study explored these relationships using data from 103 lakes across China. Eutrophication parameters including total nitrogen (TN), total phosphorus (TP), TN:TP ratio, chemical oxygen demand (CODMn), chlorophyll-a (Chl-a), Secchi depth (SD), and trophic state index (TSI) were collected for the period 2001–2005. Sixteen natural factors included three of geographic location, five of lake morphology, and eight of climate variables. Pearson correlation analysis showed that TP and TSI were negatively related to elevation, lake depth, and lake volume, and positively related to longitude. All eutrophication parameters, except for CODMn and Chl-a, showed no significant correlation with climate variables. Multiple regression analyses indicated that natural factors together accounted for 13–58% of the variance in eutrophication parameters. When the 103 study lakes were classified into different groups based on longitude and elevation, regression analyses demonstrated that natural factors explained more variance in TN, TP, CODMn, Chl-a, and TSI in western lakes than in eastern lakes. Lake depth, volume, elevation, and mean annual precipitation were the main predictors of eutrophication parameters for different lake groups. Although anthropogenic impacts such as point- and nonpoint-source pollution are considered as the main determinants of lake eutrophication, our results suggest that some natural factors that reflect lake buffer capacity to nutrient inputs can also play important roles in explaining the eutrophication status of Chinese lakes.  相似文献   

19.
蚯蚓对废纸屑再利用及养分贫瘠土壤综合质量的影响   总被引:1,自引:0,他引:1  
办公废纸屑作为常见有机废弃物,由于体积小且转化为再生纸成本高,因而再利用很难。但其含有大量有机碳(特别是纤维素)可能有助于退化土壤修复。蚯蚓对土壤有机质分解和其他土壤功能有重要影响,办公废纸屑和蚯蚓共同作用如何影响养分贫瘠土壤质量至今未知。研究以赤子爱胜蚓为接种蚯蚓,将办公废纸屑添加到养分贫瘠土壤中,分别设置纯土壤培养为对照组(S)、单独添加废纸屑(SP)、单独接种赤子爱胜蚓(SE)和添加废纸屑并接种赤子爱胜蚓的处理(SPE),比较培养90 d后各处理理化指标(pH、有机碳、全氮、全磷、全钾、碱解氮、速效磷、速效钾、交换性阳离子钾、钠、钙、镁等)、微生物磷脂脂肪酸(PLFAs)总含量和微生物结构的差异,在此基础上综合评价土壤质量,阐明废纸屑和赤子爱胜蚓在养分贫瘠土壤改良修复中的作用。结果显示:SPE处理较SP处理显著提高废纸屑的分解率89.48%。与对照相比,SP处理能够显著提高土壤pH值2.94个单位,SPE处理能够使其维持在中性水平;前者显著提高土壤有机碳(SOC)125.76%,交换性钠钙镁(NaEx、CaEx、MgEx  相似文献   

20.
植被恢复对土壤营养元素的存赋及其生态化学计量特征的影响广受关注,为了深入了解不同植被恢复类型下土壤碳、氮、磷储量与生态化学计量特征,选择滇中地区退化山地飒马场流域具有代表性的4种不同修复阶段的典型植被(荒坡灌草丛、云南松林、针阔混交林和次生常绿阔叶林)为研究对象,分析了不同植被类型下不同深度土壤中有机碳(SOC)、全氮(TN)、全磷(TP)储量和化学计量变化特征。结果表明,退化山地的植被恢复显著改变土壤碳氮磷储存能力和化学计量比,这种改变作用整体上随土壤深度增加而降低。其中,在0—60 cm土层上,SOC储量在次生常绿阔叶林最高,达123.41 t/hm2,其次是针阔混交林(115.69 t/hm2)和云南松林(93.08 t/hm2),荒坡灌草丛(89.56 t/hm2)最低;TN储量针阔混交林(4.91 t/hm2)>次生常绿阔叶林(4.58 t/hm2)>云南松林(4.43 t/hm2)>荒坡灌草丛(3.98 ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号