首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The German-American physiologist Jacques Loeb (1859-1924) and the Polish embryologist Emil Godlewski, jr. (1875-1944) contributed many valuable works to the body of developmental biology. Jacques Loeb was world famous at the beginning of the twentieth century for his development and demonstration of artificial parthenogenesis in 1899 and his experiments on regeneration. He served as a role model for the younger Polish experimenter Emil Godlewski, who began his career as a researcher like Loeb at the Zoological Station in Naples. Following Godlewski's first visit to Naples in 1901 a close relationship between the two scientists developed. Until Loeb's death in 1924 the two exchanged ideas via correspondence that was only interrupted during the First World War. The aim of the paper is to examine the transatlantic transfer of knowledge in the field of biological experimentation that was fostered by these two protagonists. Using a modification of Bruno Latour's model of the 'Circulatory System of Science' as a heuristic tool, different mechanisms of scientific exchange are displayed. With the help of Loeb's and Godlewski's correspondence the role of scientific communities, methods, allies, the public and institutions in the process of knowledge transfer are analysed. Preconditions for success and failure in transferring science are examined.  相似文献   

2.
Catecholamine secretion and adenylate cyclase activation in sea urchin eggs   总被引:1,自引:0,他引:1  
The role of neurotransmitters in sea-urchin eggs was investigated by studying their effect on adenylate cyclase of the egg membrane. Maximal stimulation of enzyme activity occurs in the presence of dopamine and GTP. 5-hydroxytriptamine, 5-methoxytriptamine and acetylcholine have no effect on activity, despite a decrease in intracellular cAMP level in eggs treated with 5-hydroxytriptamine antagonists as previously reported (Renaud et al., 1983). High-performance liquid chromatography (HPLC) revealed that dopamine is released from the sea-urchin egg into the external medium following fertilization.  相似文献   

3.
St John JC  Schatten G 《Genetics》2004,167(2):897-905
Offspring produced by nuclear transfer (NT) have identical nuclear DNA (nDNA). However, mitochondrial DNA (mtDNA) inheritance could vary considerably. In sheep, homoplasmy is maintained since mtDNA is transmitted from the oocyte (recipient) only. In contrast, cattle are heteroplasmic, harboring a predominance of recipient mtDNA along with varying levels of donor mtDNA. We show that the two nonhuman primate Macaca mulatta offspring born by NT have mtDNA from three sources: (1) maternal mtDNA from the recipient egg, (2) maternal mtDNA from the egg contributing to the donor blastomere, and (3) paternal mtDNA from the sperm that fertilized the egg from which the donor blastomere was isolated. The introduction of foreign mtDNA into reconstructed recipient eggs has also been demonstrated in mice through pronuclear injection and in humans through cytoplasmic transfer. The mitochondrial triplasmy following M. mulatta NT reported here forces concerns regarding the parental origins of mtDNA in clinically reconstructed eggs. In addition, mtDNA heteroplasmy might result in the embryonic stem cell lines generated for experimental and therapeutic purposes ("therapeutic cloning").  相似文献   

4.
硬骨鱼类体细胞核移植的研究   总被引:6,自引:0,他引:6  
本文用不同属、科、目的硬骨鱼类作材料进行体细胞核移植研究。鲫鱼(Carassiusauratus)、鲮鱼(Cirrhinusmolitorella)和尼罗罗非鲫(Tilapianilotica)的体细胞核(头肾细胞)移植到鲤鱼(Cyprinuscarpio)的成熟去核卵中,通过继代核移植,在鲫鱼体细胞核和鲤鱼去核卵的属间组合中,获得发育到血液循环期的幼鱼;在鲮鱼体细胞核和鲤鱼去核卵的亚科间组合中,获得发育到心脏跳动期的晚期胚胎;在尼罗非鲫体细胞核和鲤鱼去枚卵的目间组合中,获得发育到肌肉效应期的胚胎。由于是直接用成鱼体细胞核作供核体进行核移植,因而能够克服供体鱼和受体鱼不同步产卵的困难。实验结果表明,这对进行硬骨鱼类核质杂交研究无疑是一种简便而又有效的方法。  相似文献   

5.
本文介绍了世界上和中国采用细胞核移植技术克隆动物的研究历史。综述了细胞核移植的程序、方法和影响因素,包括受体卵母细胞的去核、供体细胞核的制备、核移植、激活、受体细胞与供体细胞的融合、重组胚的体内和体外培养以及胚胎移植产生克隆动物。对克隆动物研究和应用前景进行了讨论。近期的研究结果表明,多代克隆可产生大量遗传性相同的动物,不久的将来克隆技术在商业上的应用将成为现实。  相似文献   

6.
Progress in mammalian cloning started from cloning embryos (of mice, rats, rabbits, sheep, goats, pigs, cattle and rhesus monkeys) and culminated in obtaining clones of sheep, cattle, pigs and mice from adult somatic cells. Knowing the relationship between the cell cycles of the recipient and the donor of cell nucleus in embryonic cloning by nuclear transfer one can adjust the phases of the cell cycle properly. Metaphase II recipients accept G1 (in most species) or G2 donors (in the mouse). Interphase recipients can harbour nuclei in all stages of cell cycle. Relatively little is known about somatic cloning. Two attitudes are applied: either the donor is in the G0 phase or the recipient is in a prolonged MII phase.  相似文献   

7.
To date, the efficiency of pig cloning by nuclear transfer of somatic cell nuclei has been extremely low, with less than 1% of transferred embryos surviving to term. Even the utilization of complex procedures such as two rounds of nuclear transfer has not resulted in greater overall efficiencies. As a result, the applicability of the technology for the generation of transgenic and cloned animals has not moved forward rapidly. We report here a simple nuclear transfer protocol, utilizing commercially available in vitro-matured oocytes, that results in greater than 5% overall cloning efficiency. Of five recipients receiving nuclear transfer embryos produced with a fetal fibroblast cell line as nuclear donor, all five established pregnancies by day 28 (100%), and 4/5 (80%) went to term. Efficiencies for each transfer were 7% (9 piglets/128 doublets transferred), 5% (5/100), 12% (7/59), and 6.6% (7/106). The overall efficiency in all recipients was 5.5% and in pregnant recipients 7.7%, with a total of 28 cloned piglets produced. With the average fusion rate being 58%, the percentage of fused doublets producing a live piglet approached 12%. The method described here can be undertaken by a single micromanipulator at a reasonable cost, and should facilitate the broad utilization of porcine cloning technology in transgenic and nontransgenic applications.  相似文献   

8.
Production of a cloned calf using zona-free serial nuclear transfer   总被引:4,自引:0,他引:4  
The efficiency of generating cloned animals following somatic cell nuclear transfer appears to have reached a plateau, despite ongoing research to improve developmental outcomes. A major limitation appears in the restricted nature of the adult/donor cell to de-differentiate to form a totipotent nucleus. Serial nuclear transfer, a modified cloning technique, has increased the developmental competence of amphibian, murine and porcine cloned embryos. This procedure involves a second nuclear transfer step; pronuclear-like cloned nuclei are transferred into pronuclear stage zygotic cytoplasts. The present study reports on the development of a serial nuclear transfer technique in the bovine, based on a zona-free method (hand-made cloning), resulting in the birth of a cloned calf. Comparisons were made between embryos produced by hand-made cloning and serial nuclear transfer. There were no differences between in vitro development or differential cell counts in the blastocysts produced. Transfer of 16 serial hand-made cloned blastocysts resulted in the production of one healthy calf (6%), whereas hand-made cloning resulted in the birth of 1 calf from 23 transferred blastocysts (4%). One serial nuclear transfer pre-term fetus had renal and hepatic abnormalities (previously observed in clones from this cell line). Although it may not be as beneficial in the bovine as in other species, normal placentation (size, placentomes and umbilicus) was encouraging. Refinement of this technique may help to identify species-specific differences in zygotic competence that affect reprogramming of donor cell nuclei and that may improve efficiency.  相似文献   

9.
10.
In previous studies of nuclear transplantation, most cloned animals were obtained by intraspecies nuclear transfer and are phenotypically identical to their nuclear donors; furthermore, there was no further report on successful fish cloning since the report of cloned zebrafish. Here we report the production of seven cross-genus cloned fish by transferring nuclei from transgenic common carp into enucleated eggs of goldfish. Nuclear genomes of the cloned fish were exclusively derived from the nuclear donor species, common carp, whereas the mitochondrial DNA from the donor carp gradually disappeared during the development of nuclear transfer (NT) embryos. The somite development process and somite number of nuclear transplants were consistent with the recipient species, goldfish, rather than the nuclear donor species, common carp. This resulted in a long-lasting effect on the vertebral numbers of the cloned fish, which belonged to the range of goldfish. These demonstrate that fish egg cytoplasm not only can support the development driven by transplanted nuclei from a distantly related species at the genus scale but also can modulate development of the nuclear transplants.  相似文献   

11.
Unlike biologists from several European countries, most French embryologists did not work from the onset on problems associated with the Spemann-Mangold organizer, though they were fully aware of the importance of the discovery. They preferred to stay on other original topics, but their later work was of course influenced by the induction concepts. The exploration of secondary inductions in various organ formations was flourishing after 1950. As far as primary induction is concerned, two exceptions must be stressed: Vintemberger, who, before World War II, worked on the frog organizer for a few years, and especially Capuron (1968), who repeated Spemann and Mangold's fundamental experiment on a large scale. Then, from 1980 on, a series of studies dealing with the neural induction concept focused on studies of the gastrula ectoderm itself, was undertaken, mainly in Toulouse University by Duprat and her colleagues, and in Paris-6 University by Boucaut and his colleagues.  相似文献   

12.
Cyclic ADP-ribose (cADPR) is a cyclic metabolite of NAD+ synthesised in cells and tissues expressing ADP-ribosyl cyclases. Although it was first discovered in sea-urchin egg extracts as a potent calcium mobilizing agent, subsequent studies have indicated that it may have a widespread action in the activation of calcium-release channels in such diverse systems as mammalian neurones, myocytes, blood cells, eggs, and plant microsomes. In this review we focus on recent work suggesting that cADPR enhances the sensitivity of ryanodine-sensitive calcium-release channels (RyRs) to activation by calcium, a phenomenon termed calcium-induced calcium release (CICR). Two roles for cADPR in calcium signaling are discussed. The first is as a classical second messenger where its levels are controlled by extracellular stimuli, and the second mode of cellular regulation is that the levels of intracellular cADPR may set the sensitivity of RyRs to activation by an influx of calcium in excitable cells. These two possible actions of cADPR are illustrated by considering the signal transduction events during the fertilization of the sea-urchin egg and the modulation of CICR during excitation-coupling in isolated guinea-pig ventricular myocytes, respectively.  相似文献   

13.
The electrofusion method, used extensively in livestock cloning, cannot be used in mice, because it is believed that the mouse oocytes are more susceptible to detrimental effects of electrical stimulus than oocytes from other species. Reports on whether a delayed activation after electrofusion and a premature chromosome condensation (PCC) is essential for efficient cloning are inconclusive. To address these issues, effects of pulsing on activation and MPF activity of nonenucleated oocytes and effects of delayed activation and MG132 treatment on donor nuclear PCC and preimplantation development of embryos cloned by electrofusion or nuclear injection were compared between different cytoplast ages in mice and goats. The results indicated that the use of oocytes collected early after donor stimulation would make it possible to conduct somatic cell nuclear transfer in mice by electrofusion. Whether a delayed activation is essential was dependent upon the age, or rather, the level, of MPF activity of the cytoplasts at the time of electrofusion, as was the requirement for MG132 treatment. The competence for blastocyst formation of cloned embryos was highly correlated with the level of donor nuclear PCC in recipient cytoplasts. The nuclear injection technique was more adaptable to older cytoplast ages, and hence less dependent on drugs for inhibition of MPF inactivation, compared to electrofusion.  相似文献   

14.
In a recent publication Tom Douglas and Katrien Devolder have proposed a new account of genetic parenthood, building on the work of Heidi Mertes. Douglas and Devolder’s account aims to solve, among other things, the question of who are the genetic parents of an individual created through somatic cell nuclear transfer (i.e. cloning): (a) the nuclear DNA provider or (b) the progenitors of the nuclear DNA provider. Such a question cannot be answered by simply appealing to the folk account of genetic parenthood, according to which the genetic parents of an individual are those individuals who produced the egg and sperm, respectively, which fused to create the embryo. It cannot be so as in cloning there is no fertilization as such. In this article I critically examine Douglas and Devolder’s new account of genetic parenthood and demonstrate that it is vulnerable to counterexamples that exploit the lack of a condition specifying that genetic parents should cause a child’s coming into existence.  相似文献   

15.
The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.  相似文献   

16.
Choosing the right nuclear donor is the most critical decision in cloning by nuclear transfer (NT), or nuclear cloning, because the cloned animal will be a genetic copy of the donor cell genome used for NT. Both donor cell type and cell cycle stage are important methodological parameters and influence nuclear cloning efficiency. Cloning, however, is a multi-step procedure and the exact contribution of the nuclear donor to overall cloning success must be determined in comparative studies. This requires strict standardization of isolation, purification, and culture protocols, and application of stringent identification criteria in order to obtain a homogenous donor cell population. In all these respects, the standards in the cloning field are currently poor. The aim of this review is to provide a brief guideline for the major practical aspects of donor cell selection, cell cycle synchronization and preparation for NT.  相似文献   

17.
Studies were designed to further explore the use of pharmacological agents to produce developmentally competent enucleated mouse oocytes for animal cloning by somatic cell nuclear transfer. Metaphase II oocytes from CF-1 and B6D2F1 strains were activated with ethanol and subsequently exposed to demecolcine at various times postactivation. Chromosome segregation, spindle dynamics, and polar body (PB) extrusion were monitored by fluorescence microscopy using DNA-, microtubule-, and microfilament-selective probes. Exposure to demecolcine did not affect rates of oocyte activation induced by ethanol but did disrupt the coordination of cytokinesis and karyokinesis, suppressing the extent and completion of spindle rotation and second PB extrusion in a strain-dependent manner. Moreover, strain- and treatment-specific variations in the rate of oocyte enucleation were also detected. In particular, CF1 oocytes were more efficiently enucleated relative to B6D2F1 oocytes, and demecolcine treatments initiated early after activation resulted in higher enucleation rates than when treatment was delayed. The observed strain differences are possibly caused by a combination of factors, such as the time course of meiotic cell-cycle progression after ethanol activation, the degree of spindle rotation, and the extent of second PB extrusion. These results suggest that developmentally competent cytoplasts can be produced by timely exposure of activated oocytes to agents that disrupt spindle microtubules. However, the utility of the demecolcine-induced enucleation protocol will require further investigation into factors linking karyokinesis to cytokinesis at the levels of cell-cycle control and oocyte cytoskeletal remodeling following artificial or natural means of egg activation.  相似文献   

18.
Three early 20th-century attempts at unifying separate areas of biology, in particular development, genetics, physiology, and evolution, are compared in regard to their success and fruitfulness for further research: Jacques Loeb's reductionist project of unifying approaches by physico-chemical explanations; Richard Goldschmidt's anti-reductionist attempts to unify by integration; and Sewall Wright's combination of reductionist research and vision of hierarchical genetic systems. Loeb's program, demanding that all aspects of biology, including evolution, be studied by the methods of the experimental sciences, proved highly successful and indispensible for higher level investigations, even though evolutionary change and properties of biological systems up to now cannot be fully explained on the molecular level alone. Goldschmidt has been appraised as pioneer of physiological and developmental genetics and of a new evolutionary synthesis which transcended neo-Darwinism. However, this study concludes that his anti-reductionist attempts to integrate genetics, development and evolution have to be regarded as failures or dead ends. His grand speculations were based on the one hand on concepts and experimental systems that were too vague in order to stimulate further research, and on the other on experiments which in their core parts turned out not to be reproducible. In contrast, Sewall Wright, apart from being one of the architects of the neo-Darwinian synthesis of the 1930s, opened up new paths of testable quantitative developmental genetic investigations. He placed his research within a framework of logical reasoning, which resulted in the farsighted speculation that examinations of biological systems should be related to the regulation of hierarchical genetic subsystems, possibly providing a mechanism for development and evolution. I argue that his suggestion of basing the study of systems on clearly defined properties of the components has proved superior to Goldschmidt's approach of studying systems as a whole, and that attempts to integrate different fields at a too early stage may prove futile or worse.  相似文献   

19.
核移植与治疗性克隆   总被引:2,自引:1,他引:1  
徐小明  雷安民  华进联  窦忠英 《遗传》2005,27(2):289-296
核移植与治疗性克隆在畜牧业生产以及生物医学上具有广阔和诱人的应用前景。文章分析指出卵母细胞质量与供核细胞重新编程是影响体细胞核移植效率及克隆动物异常的主要因素,阐述了治疗性克隆所面临的一些基本问题及出路:治疗性克隆以核移植技术为基础,核移植所面临的一些问题也直接影响着治疗性克隆的临床应用;核移植胚胎干细胞分离培养效率的高低以及向重要功能细胞定向分化是治疗性克隆的前提;成体干细胞可用于一些重大疾病的治疗,但不能完全替代克隆性治疗;伦理问题也阻碍治疗性克隆的发展。核移植及治疗性克隆技术要想尽快更好地应用于临床和造福于人类,需要不断完善各技术环节和加强一些基础理论的研究。Abstract: Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.  相似文献   

20.
Birth of mice after nuclear transfer by electrofusion using tail tip cells   总被引:36,自引:0,他引:36  
Mice have been successfully cloned from cumulus cells, fibroblast cells, embryonic stem cells, and immature Sertoli cells only after direct injection of their nuclei into enucleated oocytes. This technical feature of mouse nuclear transfer differentiates it from that used in domestic species, where electrofusion is routinely used for nuclear transfer. To examine whether nuclear transfer by electrofusion can be applied to somatic cell cloning in the mouse, we electrofused tail tip fibroblast cells with enucleated oocytes, and then assessed the subsequent in vitro and in vivo development of the reconstructed embryos. The rate of successful nuclear transfer (fusion and nuclear formation) was 68.8% (753/1094) and the rate of development into morulae/blastocysts was 40.8% (260/637). After embryo transfer, seven (six males and one female; 2.5% per transfer) normal fetuses were obtained at 17.5-21.5 dpc. These rates of development in vitro and in vivo are not significantly different from those after cloning by injection (44.7% to morulae/blastocysts and 4.8% to term). These results indicate that nuclear transfer by electrofusion is practical for mouse somatic cell cloning and provide an alternative method when injection of donor nuclei into recipient oocytes is technically difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号