首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
Delaney AJ  Jahr CE 《Neuron》2002,36(3):475-482
Presynaptic kainate receptors (KARs) facilitate or depress transmitter release at several synapses in the CNS. Here, we report that synaptically activated KARs presynaptically facilitate and depress transmission at parallel fiber synapses in the cerebellar cortex. Low-frequency stimulation of parallel fibers facilitates synapses onto both stellate cells and Purkinje cells, whereas high-frequency stimulation depresses stellate cell synapses but continues to facilitate Purkinje cell synapses. These effects are mimicked by exogenous KAR agonists and eliminated by blocking KARs. This differential frequency-dependent sensitivity of these two synapses regulates the balance of excitatory and inhibitory input to Purkinje cells and therefore their excitability.  相似文献   

2.
Silkis I 《Bio Systems》2000,54(3):141-149
The model of three-layer olivary-cerebellar neural network with modifiable excitatory and inhibitory connections between diverse elements is suggested. The same Hebbian modification rules are proposed for Purkinje cells, granule (input) cells, and deep cerebellar nuclei (output) cells. The inverse calcium-dependent modification rules for these cells and hippocampal/neocortical neurones or Golgi cells are conceivably the result of the involvement of cGMP and cAMP in postsynaptic processes. The sign of simultaneous modification of excitatory and inhibitory inputs to a cell is opposite and determined by the variations in pre- and/or postsynaptic cell activity. Modification of excitatory transmission between parallel fibers and Purkinje cells, mossy fibers and granule cells, and mossy fibers and deep cerebellar nuclei cells essentially depends on inhibition effected by stellate/basket cells, Golgi cells and Purkinje cells, respectively. The character of interrelated modifications of diverse synapses in all three layers of the network is influenced by olivary cell activity. In the absence (presence) of a signal from inferior olive, the long-term potentiation (depression) in the efficacy of a synapse between input mossy fiber and output cell can be induced. The results of the suggested model are in accordance with known experimental data.  相似文献   

3.
Abstract: Neurons containing multiple excitatory inputs may sort and target glutamate receptor subtypes to subsets of synapses. A good model for testing this hypothesis is the Purkinje cell, which expresses significant levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, kainate, N -methyl- d -aspartate, δ-, and metabotropic glutamate receptors. Purkinje cells receive two excitatory inputs, the parallel and climbing fibers; the combined effect of stimulation of these two inputs is to produce long-term depression of parallel fiber/Purkinje cell neurotransmission. Distribution of glutamate receptors in these two synapse populations in rat cerebella was studied using preembedding immunocytochemistry with antibodies to GluR1, GluR2/3, GluR5-7, NR1, δ1/2, and mGluR1α. Moderate/dense postsynaptic staining was most frequent in postsynaptic densities and spines of both parallel and climbing fiber synapses with mGluR1α antibody, was intermediate in frequency with GluR2/3 and GluR5-7 antibodies, and was least frequent with GluR1 and NR1 antibodies. The most striking finding was the absence of significant postsynaptic staining with δ1/2 antibody in climbing fiber synapses in adult animals, even though postsynaptic staining was prevalent in parallel fiber synapses with this antibody. In contrast to adults, moderate/dense postsynaptic immunolabeling of climbing fiber synapses with δ1/2 antibody was common in rats at 10 days postnatal. This study provides direct morphological evidence that δ-glutamate receptors are differentially targeted to synapse populations. Our results support previous suggestions that δ2 is involved in development of parallel and climbing fiber synapses and in long-term depression of parallel fiber/Purkinje synaptic responses in adults.  相似文献   

4.

Background

Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons.

Methods and Findings

In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP) in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs). In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC) layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs.

Conclusions

The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.  相似文献   

5.
Signal processing in cerebellar Purkinje cells   总被引:4,自引:0,他引:4  
Mechanisms and functional implications of signal processing in cerebellar Purkinje cells have been the subject of recent extensive investigations. Complex patterns of their planar dendritic arbor are analysed with computer-aided reconstructions and also topological analyses. Local computation may occur in Purkinje cell dendrites, but its extent is not clear at present. Synaptic transmission and electrical and ionic activity of Purkinje cell membrane have been revealed in detail, and related biochemical processes are being uncovered. A special type of synaptic plasticity is present in Purkinje cell dendrites; long-term depression (LTD) occurs in parallel fiber-Purkinje cell transmission when the parallel fibers are activated with a climbing fiber innervating that Purkinje cell. Evidence indicates that synaptic plasticity in Purkinje cells is due to sustained desensitization of Purkinje dendritic receptors to glutamate, which is a putative neurotransmitter of parallel fibers, and that conjunctive activation of a climbing fiber and parallel fibers leads to desensitization through enhanced intradendritic calcium concentration. A microzone of the cerebellar cortex is connected to an extracerebellar neural system through the inhibitory projection of Purkinje cells to a cerebellar or vestibular nuclear cell group. Climbing fiber afferents convey signals representing control errors in the performance of a neural system, and evoke complex spikes in Purkinje cells of the microzone connected to the neural system. Complex spikes would modify the performance of the microzone by producing LTD in parallel fiber-Purkinje cell synapses, and consequently would improve the overall performance of the neural system. The primary function of the cerebellum thus appears to be endowing adaptability to numerous neural control systems in the brain and spinal cord through error-triggered reorganization of the cerebellar cortical circuitry.  相似文献   

6.
The rat olivocerebellar climbing fiber system has been investigated at the light and electron microscopic level with anterograde Phaseolus vulgaris leucoagglutinin (PHA-L) tracing. From PHA-L Injections in different parts of the inferior olive labelled axons could be traced to the contralateral cerebellum. Arriving in the deep cerebellar white matter, the olivocerebellar axons ran around and through the cerebellar nuclei. Plexuses of labelled terminal fibers appeared in the cerebellar nuclei, and the density of this innervation was estimated to 1-4 million varicosities per mm3. Ultrastructurally, these boutons engaged in asymmetric synapses with small dendrites. Bundles of labelled fibers continued into the folial white matter, and terminated as climbing fibers in sagittal zones of the cerebellar cortex. Both the cortical and nuclear terminations of the olivocerebellar system are strictly topographically organized. The plasticity of climbing fibers was studied after partial lesions of the inferior olive induced by 3-acetylpyridine. One to 6 months after the lesion, surviving climbing fibers demonstrated extensive sprouting. The newly formed axons originated from parent climbing fiber plexuses, grew in the direction of parallel fibers, and formed terminal plexuses around several neighbouring Purkinje cells. As normal climbing fiber terminals, these terminals formed asymmetric synapses with spines of proximal Purkinje cell dendrites, and evidence by Benedetti et al. (1983) shows that the regenerated innervation is electrophysiologically functional. It is suggested that denervated Purkinje cells release a trophic substance, which stimulate surviving climbing fibers to sprouting, axonal growth and synapse formation.  相似文献   

7.
The molecular layer of the cerebellar cortex is populated by glial progenitors that express ionotropic glutamate receptors and extend numerous processes among Purkinje cell dendrites. Here, we show that release of glutamate from climbing fiber (CF) axons produces AMPA receptor currents with rapid kinetics in these NG2-immunoreactive glial cells (NG2+ cells) in cerebellar slices. NG2+ cells may receive up to 70 discrete inputs from one CF and, unlike mature Purkinje cells, are often innervated by multiple CFs. Paired Purkinje cell-NG2+ cell recordings show that one CF can innervate both cell types. CF boutons make direct synaptic junctions with NG2+ cell processes, indicating that this rapid neuron-glia signaling occurs at discrete sites rather than through ectopic release at CF-Purkinje cell synapses. This robust activation of Ca2+-permeable AMPA receptors in NG2+ cells expands the influence of the olivocerebellar projection to this abundant class of glial progenitors.  相似文献   

8.
Pugh JR  Raman IM 《Neuron》2006,51(1):113-123
Behavioral and computational studies predict that synaptic plasticity of excitatory mossy fiber inputs to cerebellar nuclear neurons is required for associative learning, but standard tetanization protocols fail to potentiate nuclear cell EPSCs in mouse cerebellar slices. Nuclear neurons fire action potentials spontaneously unless strongly inhibited by Purkinje neurons, raising the possibility that plasticity-triggering signals in these cells differ from those at classical Hebbian synapses. Based on predictions of neuronal activity during delay eyelid conditioning, we developed quasi-physiological induction protocols consisting of high-frequency mossy fiber stimulation and postsynaptic hyperpolarization. Robust, NMDA receptor-dependent potentiation of nuclear cell EPSCs occurred with protocols including a 150-250 ms hyperpolarization in which mossy fiber stimulation preceded a postinhibitory rebound depolarization. Mossy fiber stimulation potentiated EPSCs even when postsynaptic spiking was prevented by voltage-clamp, as long as rebound current was evoked. These data suggest that Purkinje cell inhibition guides the strengthening of excitatory synapses in the cerebellar nuclei.  相似文献   

9.
Recent progress in the comparative analysis of the vertebrate cerebellar organization shows that the cerebella of different tetrapods have a basically similar intrinsic organization, whereas the cerebellum of fishes displays a number of fundamental differences in this respect. Clear examples of teleostean cerebellar specializations are present in the gigantocerebellum of mormyrids, including a valvula cerebelli, the absence of a parasagittal zonal organization, the presence of eurydendroid projection neurons instead of deep cerebellar nuclei, a precerebellar nucleus lateralis valvulae, olivocerebellar fibers that do not climb into the molecular layer, uni- and bilateral locations of granule cells, parallel fibers without a T-shaped bifurcation and with a coextensive distribution in the transverse plane, and different Purkinje cell arrangements including a dendritic palisade pattern. A theoretical exploration of the possible significance of these configurations suggests that they all might be involved in a single main cerebellar function, i.e. coincidence detection of parallel fiber activity by Purkinje cells.  相似文献   

10.
Summary The teleostean cerebellar cortex has been studied with respect to its cytoarchitectonic arrangement and intracortical neuronal circuits. Samples of fish cerebellum were fixed either by immersion or vascular perfusion in 5% glutaraldehyde solution and processed for light and scanning electron microscopy. The cerebellar cortex shows four distinct layers: granular; fibrous stratum; Purkinje cell; and molecular layers. In the granular layer, mossy and climbing fiber glomeruli were characterized. The mossy glomerular region appeared as polygonal, round or ovoid clews formed by the convergence of up to 17 dendritic profiles upon a thick mossy fiber branch. The en passant nature of mossy fiber-granule cell dendrite synaptic relationship was clearly appreciated. The climbing fibers showed tendril and glomerular collaterals. The latter form thin, elongated glomeruli. Remnants of a neuroglial envelope were observed in the mossy fiber glomeruli but are apparently absent from the climbing fiber glomeruli. The beaded-shape Golgi cell axonal ramifications were observed participating in the formation of both glomerular types. Velate protoplasmic astrocytes and oligodendrocytes were also identified. The fibrous stratum appeared to be formed by compact bundles of thick and thin myelinated axons, running horizontally beneath the Purkinje cell layer and apparently belonging to ascending climbing fibers and descending Purkinje cell axons. At the Purkinje cell layer a selective removal of Bergmann glial cells was observed allowing the visualization of the pericellular basket and the pinceaux. Climbing fiber stems and their tendril collaterals were seen on their way to the molecular layer ascending parallel to the Purkinje dendritic ramifications. Stellate neuron processes were found passing through the fan-like arborescence of Purkinje cell dendrites.  相似文献   

11.
Reliability of Computation in the Cerebellum   总被引:1,自引:0,他引:1       下载免费PDF全文
The mossy fiber-granule cell-parallel fiber-Purkinje cell system of the cerebellar cortex is investigated from the viewpoint of reliability of computation. It is shown that the effects of variability in the inputs to a Purkinje cell can be reduced by having a large number of parallel fibers whose activities are statistically independent. The mossy fiber-granule cell relay is shown to be capable of performing the required function of transforming the activity in a small number of mossy fibers into activity in a much larger number of parallel fibers, while ensuring that there is little correlation between the activities of individual parallel fibers. The effects of variability in the outputs of Purkinje cells may be reduced by redundancy and convergence schemes, as evidenced by the geometrical pattern of parallel fibers and Purkinje cells and the convergence of these cells onto their target neurons.  相似文献   

12.
Some neurons, including cerebellar Purkinje cells, are completely ensheathed by astrocytes. When granule cell neurons and functional glia were eliminated from newborn mouse cerebellar cultures by initial exposure to a DNA synthesis inhibitor, Purkinje cells lacked glial sheaths and there was a tremendous sprouting of Purkinje cell recurrent axon collaterals, terminals of which hyperinnervated Purkinje cell somata, including persistent somatic spines, and formed heterotypical synapses with Purkinje cell dendritic spines, sites usually occupied by parallel fiber (granule cell axon) terminals. Purkinje cells in such preparations failed to develop complex spikes when recorded from intracellularly, and their membrane input resistances were low, making them less sensitive to inhibitory input. If granule cells and oligodendrocytes were eliminated, but astrocytes were not compromised, sprouting of recurrent axon collaterals occurred and their terminals projected to Purkinje cell dendritic spines, but the Purkinje cells had astrocytic sheaths, their somata were not hyperinnervated, the somatic spines had disappeared, complex spike discharges predominated, and membrane input resistance was like that of Purkinje cells in untreated control cultures. When cerebellar cultures without granule cells and glia were transplanted with granule cells and/or glia from another source, a series of changes occurred that included stripping of excess Purkinje cell axosomatic synapses by astrocytic processes, reduction of heterotypical axospinous synapses in the presence of astrocytes, disappearance of Purkinje cell somatic spines with astrocytic ensheathment, and proliferation of Purkinje cell dendritic spines after the introduction of astrocytes. Dendritic spine proliferation was followed by formation of homotypical axospinous synapses when granule cells were present or persistence as unattached spines in the absence of granule cells. The results of these studies indicate that astrocytes regulate the numbers of Purkinje cell axosomatic and axospinous synapses, induce Purkinje cell dendritic spine proliferation, and promote the structural and functional maturation of Purkinje cells.  相似文献   

13.
At the cerebellar synapses between parallel fibers (PFs) and Purkinje cells (PCs), long-term depression (LTD) of the excitatory synaptic current has been assumed to be independent of the N-methyl-D-aspartate (NMDA) receptor activation because PCs lack NMDA receptors. However, we now report that LTD is suppressed by NMDA receptor antagonists that act on presynaptic NMDA receptors of the PFs. This effect is still observed when the input is restricted to a single fiber. Therefore, LTD does not require the spatial integration of multiple inputs. In contrast, it involves a temporal integration, since reliable LTD induction requires the PFs to fire two action potentials in close succession. This implies that LTD will selectively depress the response to a burst of presynaptic action potentials.  相似文献   

14.
The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1174–1188, 2015  相似文献   

15.
The cerebellum is a brain structure involved in the coordination, control and learning of movements, and elucidation of its function is an important issue. Japanese scholars have made seminal contributions in this field of neuroscience. Electrophysiological studies of the cerebellum have a long history in Japan since the pioneering works by Ito and Sasaki. Elucidation of the basic circuit diagram of the cerebellum in the 1960s was followed by the construction of cerebellar network theories and finding of their neural correlates in the 1970s. A theoretically predicted synaptic plasticity, long-term depression (LTD) at parallel fibre to Purkinje cell synapse, was demonstrated experimentally in 1982 by Ito and co-workers. Since then, Japanese neuroscientists from various disciplines participated in this field and have made major contributions to elucidate molecular mechanisms underlying LTD. An important pathway for LTD induction is type-1 metabotropic glutamate receptor (mGluR1) and its downstream signal transduction in Purkinje cells. Sugiyama and co-workers demonstrated the presence of mGluRs and Nakanishi and his pupils identified the molecular structures and functions of the mGluR family. Moreover, the authors contributed to the discovery and elucidation of several novel functions of mGluR1 in cerebellar Purkinje cells. mGluR1 turned out to be crucial for the release of endocannabinoid from Purkinje cells and the resultant retrograde suppression of transmitter release. It was also found that mGluR1 and its downstream signal transduction in Purkinje cells are indispensable for the elimination of redundant synapses during post-natal cerebellar development. This article overviews the seminal works by Japanese neuroscientists, focusing on mGluR1 signalling in cerebellar Purkinje cells.  相似文献   

16.
Sacchetti B  Scelfo B  Tempia F  Strata P 《Neuron》2004,42(6):973-982
To better understand learning mechanisms, one needs to study synaptic plasticity induced by behavioral training. Recently, it has been demonstrated that the cerebellum is involved in the consolidation of fear memory. Nevertheless, how the cerebellum contributes to emotional behavior is far from known. In cerebellar slices at 10 min and 24 hr following fear conditioning, we found a long-lasting potentiation of the synapse between parallel fibers and Purkinje cells in vermal lobules V-VI, but not in the climbing fiber synapses. The mechanism is postsynaptic, due to an increased AMPA response. In addition, in hotfoot mice with a primary deficiency of the parallel fiber to Purkinje cell synapse, cued (but not contextual) fear conditioning is affected. We propose that this synapse plays an important role in the learned fear and that its long-term potentiation may represent a contribution to the neural substrate of fear memory.  相似文献   

17.
Hull C  Regehr WG 《Neuron》2012,73(1):149-158
Here we provide evidence that revises the inhibitory circuit diagram of the cerebellar cortex. It was previously thought that Golgi cells, interneurons that are the sole source of inhibition onto granule cells, were exclusively coupled via gap junctions. Moreover, Golgi cells were believed to receive GABAergic inhibition from molecular layer interneurons (MLIs). Here we challenge these views by optogenetically activating the cerebellar circuitry to determine the timing and pharmacology of inhibition onto Golgi cells and by performing paired recordings to directly assess synaptic connectivity. In contrast to current thought, we find that Golgi cells, not MLIs, make inhibitory GABAergic synapses onto other Golgi cells. As a result, MLI feedback does not regulate the Golgi cell network, and Golgi cells are inhibited approximately 2?ms before Purkinje cells, following a mossy fiber input. Hence, Golgi cells and Purkinje cells receive unique sources of inhibition and can differentially process shared granule cell inputs.  相似文献   

18.
Eph receptor tyrosine kinases are involved in many cellular processes. In the developing brain, they act as migratory and cell adhesive cues while in the adult brain they regulate dendritic spine plasticity. Here we show a new role for Eph receptor signalling in the cerebellar cortex. Cerebellar Purkinje cells are innervated by two different excitatory inputs. The climbing fibres contact the proximal dendritic domain of Purkinje cells, where synapse and spine density is low; the parallel fibres contact the distal dendritic domain, where synapse and spine density is high. Interestingly, Purkinje cells have the intrinsic ability to generate a high number of spines over their entire dendritic arborisations, which can be innervated by the parallel fibres. However, the climbing fibre input continuously exerts an activity-dependent repression on parallel fibre synapses, thus confining them to the distal Purkinje cell dendritic domain. Such repression persists after Eph receptor activation, but is overridden by Eph receptor inhibition with EphA4/Fc in neonatal cultured cerebellar slices as well as mature acute cerebellar slices, following in vivo infusion of the EphA4/Fc inhibitor and in EphB receptor-deficient mice. When electrical activity is blocked in vivo by tetrodotoxin leading to a high spine density in Purkinje cell proximal dendrites, stimulation of Eph receptor activation recapitulates the spine repressive effects of climbing fibres. These results suggest that Eph receptor signalling mediates the repression of spine proliferation induced by climbing fibre activity in Purkinje cell proximal dendrites. Such repression is necessary to maintain the correct architecture of the cerebellar cortex.  相似文献   

19.
Dynamics of spike-timing dependent synaptic plasticity are analyzed for excitatory and inhibitory synapses onto cerebellar Purkinje cells. The purpose of this study is to place theoretical constraints on candidate synaptic learning rules that determine the changes in synaptic efficacy due to pairing complex spikes with presynaptic spikes in parallel fibers and inhibitory interneurons. Constraints are derived for the timing between complex spikes and presynaptic spikes, constraints that result from the stability of the learning dynamics of the learning rule. Potential instabilities in the parallel fiber synaptic learning rule are found to be stabilized by synaptic plasticity at inhibitory synapses if the inhibitory learning rules are stable, and conditions for stability of inhibitory plasticity are given. Combining excitatory with inhibitory plasticity provides a mechanism for minimizing the overall synaptic input. Stable learning rules are shown to be able to sculpt simple-spike patterns by regulating the excitability of neurons in the inferior olive that give rise to climbing fibers.  相似文献   

20.
Purkinje cells are the principal neurons of the cerebellar cortex and are characterized by a large and highly branched dendritic tree. For this reason, they have for a long time been an attractive model system to study the regulation of dendritic growth and differentiation. In this article, I will first review studies on different aspects of Purkinje cell dendritic development and then go on to present studies which have aimed at experimentally altering Purkinje cell dendritic development. Some of the cellular and molecular mechanisms which have been shown by these studies to be important determinants of Purkinje cell dendritic development will be discussed, in particular the role of the parallel fiber input, of hormones, and of neuronal growth factors. The organotypic slice culture method will be introduced as an important experimental tool to study Purkinje cell dendritic development under controlled conditions. Using cerebellar slice cultures, protein kinase C (PKC) has been identified as a major determinant of Purkinje cell dendritic development and the contribution of specific isoforms of PKC will be discussed. Finally, it will be shown that Purkinje cell dendritic development in slice cultures does not depend on the activation of glutamate receptors and appears to be independent of the presence of the neurotrophin BDNF. These studies indicate that the initial outgrowth of the Purkinje cell dendritic tree can occur in the absence of signals derived from afferent fibers, but is under control of PKC signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号