首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial products of photosynthesis by the C3 species Flaveria cronquistii, the C4 species F. trinervia, and the C3-C4 intermediate species F. ramosissima were determined using a pulse-chase technique with 14CO2-12CO2. The intermediate species F. ramosissima incorporated at least 42% of the total soluble 14C fixed into malate and aspartate after 10 seconds of photosynthesis in 14CO2, as compared with 90% for the C4 species F. trinervia and 5% for the C3 species F. cronquistii. In both F. ramosissima and F. trinervia, turnover of labeled malate and aspartate occurred during a chase period in 12CO2, although the rate of turnover was slower in the intermediate species. Relative to F. cronquistii, F. ramosissima showed a reduced incorporation of radioactivity into serine and glycine during the pulse period. These results indicate that a functional C4 pathway of photosynthesis is operating in F. ramosissima which can account for its reduced level of photorespiration, and that this species is a true biochemical intermediate between C3 and C4 plants.  相似文献   

2.
Aminooxyacetate (1 millimolar) did not inhibit photosynthetic 14CO2 fixation by Chlamydomonas reinhardtii Dangeard, (−) strain (N.90) but greatly stimulated the biosynthesis and excretion of glycolate. Similar results were obtained from cells grown with 5% CO2 or low CO2 (air). After 2 minutes with air-grown cells, [14C]glycolate increased from 0.3% of the total 14C fixed by the control to 11.7% in the presence of aminooxyacetate and after 10 minutes from 3.8% to 41.1%. Ammonium nitrate (0.2 millimolar) in the media blocked the aminooxyacetate stimulation of glycolate excretion. Chromatographic analyses of the labeled products in the cells and supernatant media indicated that aminooxyacetate also completely inhibited the labeling of alanine while some pyruvate accumulated and was excreted. A high percentage (35%) of initial 14CO2 fixation was into C4 acids. Initial products of 14CO2 fixation included phosphate esters as well as malate, aspartate, and glutamate in treated or untreated cells. Lactate was also a major early product of photosynthesis, and its labeling was reduced by aminooxyacetate. Inasmuch as lactate was not excreted, glycolate excretion seemed to be specific. When photosynthesis was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, labeled organic and amino acids but not phosphate esters were lost from the cells. Aminooxyacetate did not inhibit the enzymes associated with glycolate synthesis from ribulose bisphosphate.  相似文献   

3.
To study the effect of O2 on the photosynthetic and glycolate pathways, maize leaves were exposed to 14CO2 during steady-state photosynthesis in 21 or 1% O2. At the two O2 concentrations after a 14CO2 pulse (4 seconds) followed by a 12CO2 chase, there was a slight difference in CO2 uptake and in the total amount of 14C fixed, but there were marked changes in 14C distribution especially in phosphoglycerate, ribulose bisphosphate, glycine, and serine. The kinetics of 14C incorporation into glycine and serine indicated that the glycolate pathway is inhibited at low O2 concentrations. In 1% O2, labeling of glycine was reduced by 90% and that of serine was reduced by 70%, relative to the control in 21% O2. A similar effect has been observed in C3 plants, except that, in maize leaves, only 5 to 6% of the total 14C fixed under 21% O2 was found in glycolate pathway intermediates after 60 seconds chase. This figure is 20% in C3 plants. Isonicotinyl hydrazide did not completely block the conversion of glycine to serine in 21% O2, and the first carbon atom of serine was preferentially labeled during the first seconds of the chase. These results supported the hypothesis that the labeled serine not only derives from glycine but also could be formed from phosphoglycerate, labeled in the first carbon atom during the first seconds of photosynthesis.  相似文献   

4.
Snyder FW 《Plant physiology》1974,53(3):514-515
Amount and products of photosynthesis during 10 minutes were measured at different 14CO2 concentrations in air. With tobacco (Nicotiana tabacum L. cv. Maryland Mammoth) leaves the percentage of 14C in glycine plus serine was highest (42%) at 0.005% CO2, and decreased with increasing CO2 concentration to 7% of the total at 1% CO2 in air. However, above 0.03% CO2 the total amount of 14C incorporated into the glycine and serine pool was about constant. At 0.005% or 0.03% CO2 the percentage and amount of 14C in sucrose was small but increased greatly at higher CO2 levels as sucrose accumulated as an end product. Relatively similar data were obtained with sugar beet (Beta vulgaris L. cv. US H20) leaves. The results suggest that photorespiration at high CO2 concentration is not inhibited but that CO2 loss from it becomes less significant.  相似文献   

5.
Thomas  S. M.  Long  S. P. 《Planta》1978,142(2):171-174
The metabolism of 14CO2 in the cool temperate saltmarsh grass Spartina townsendii was investigated in plants grown in their natural habitats at two temperatures. Both in the spring at 10°C and in the late summer at 25°C radioactivity was initially incorporated into the organic acids malate and aspartate and then transferred to 3-phosphoglycerate in the manner characteristic of the C4 pathway of photosynthesis. Metabolism was not disrupted at the lower temperature as in some C4 plants. Radioactivity was transferred more slowly from malate into alanine, glycine and serine at 10°C, but sugars were labelled equally at both temperatures.  相似文献   

6.
Phosphinothricin (glufosinate), an irreversible inhibitor of glutamine synthetase, causes an inhibition of photosynthesis in C3 (Sinapis alba) and C4 (Zea mays) plants under atmospheric conditions (400 ppm CO2, 21% O2). This photosynthesis inhibition is proceeding slower in C4 leaves. Under non-photorespiratory conditions (1000 ppm CO2, 2% O2) there is no inhibition of photosynthesis. The inhibition of glutamine synthetase by phosphinothricin results in an accumulation of NH4 +. The NH4 +-accumulation is lower in C4 plants than in C3 plants. The inhibition of glutamine synthetase through phosphinothricin in mustard leaves results in a decrease in glutamine, glutamate, aspartate, asparagine, serine, and glycine. In contrast to this, a considerable increase in leucine and valine following phosphinothricin treatment is measured. With the addition of either glutamine, glutamate, aspartate, glycine or serine, photosynthesis inhibition by phosphinothricin can be reduced, although the NH4 +-accumulation is greatly increased. This indicates that NH4 +-accumulation cannot be the primary cause for photosynthesis inhibition by phosphinothricin. The investigations demonstrate the inhibition of transmination of glyoxylate to glycine in photorespiration through the total lack of amino donors. This could result in a glyoxylate accumulation inhibiting ribulose-1,5-bisphosphate-carboxylase and consequently CO2-fixation.Abbreviations GOGAT glutamine-2-oxoglutarate-amidotransferase - GS glutamine synthetase - PPT phosphinothricin - MSO methionine sulfoximine - RuBP ribulose-1,5-bisphosphate  相似文献   

7.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

8.
Rate of Glycolate Formation During Photosynthesis at High pH   总被引:10,自引:7,他引:3       下载免费PDF全文
The products of C14O2 fixation by Chlamydomonas and Chlorella were studied under conditions most favorable for glycolate synthesis. The highest percentage of the C14 was incorporated into glycolate in the pH range of 8 to 9. After 1 to 2 minutes as much as 40% of the C14 was found in glycolate products and only a trace of C14 was present as phosphoglycerate. Below pH 8 the rate of photosynthesis was much faster, but only a small percent of the C14 was incorporated into glycolate in 1 or 2 minutes, while a high percent of the C14 accumulated in phosphoglycerate. C14 labeling of glycolate even at pH 8 or above did not occur at times shorter than 10 seconds. During the first seconds of photosynthesis, nearly all of the C14 was found in phosphoglycerate and sugar phosphates. Thus glycolate appears to be formed after the phosphate esters of the photosynthetic carbon cycle.

Washing Chlamydomonas with water 2 or 3 times resulted in the loss of most of their free phosphate. When a small aliquot of NaHC14O3 was added to washed algae in the absence of this buffering capacity, the pH of the algal medium became 8 or above and much of the fixed C14 accumulated in glycolate.

  相似文献   

9.
Barley, Panicum milioides and Panicum maximum were exposed to 14CO2 near their photosynthetic CO2 compensation points and their respective 14C-products were determined. In short exposure times Panicum maximum had 100% of its 14C in malate and aspartate whereas Panicum milioides and barley had 16 and 3% of their respective 14C in C4 organic acids. Near the respective CO2 compensation points a linear relationship occurs in plotting the ratio of glycine, serine, and glycerate to C4 organic acids. The ratio of ribulose 1,5-bisphosphate oxygenase to phosphoenolpyruvate carboxylase is linear with their CO2 compensation points. The photosynthetic CO2 compensation point apparently is controlled by the activity of enzymes producing photorespiration metabolites and the activity of phospheonolpyruvate carboxylase.  相似文献   

10.
Ten minutes after uptake of 2,4-dichlorophenoxyacetic acid-1-14C(2,4-D-1-14C) by excised Ribes sativum leaves, 37·8 % of the radioactivity in water-soluble metabolites was in glyoxylic acid. When 2,4-D- 2-14C was supplied under the same conditions, 23·0 % of the radioactivity of the water-soluble rnetabolites was in glyoxylic acid. Radioactive glycine and glyoxylic acid, isolated from Ribes sativum 6 hr after uptake of 2,4-D-1-14C, contained essentially all of the 14C in the carboxyl-carbon atoms. When 2,4-D-2-14C was the precursor, the glycine isolated contained 64·8 % of its radioactivity in C2, while 60·0 % of the radioactivity in glyoxylic acid was in C2. The side-chain label of 2,4-D-2-14C-4-36Cl was more efficiently incorporated into ethanol-insoluble plant residue than the ring-label. The metabolism of glyoxylic acid-1-14C and 2,4-D-1-14C in excised Ribes sativum leaves were compared. The data suggest a cleavage of the acetate-moiety of 2,4-D resulting in a C2 compound, perhaps glyoxylate.  相似文献   

11.
The submersed angiosperms Myriophyllum spicatum L. and Hydrilla verticillata (L.f.) Royal exhibited different photosynthetic pulse-chase labeling patterns. In Hydrilla, over 50% of the 14C was initially in malate and aspartate, but the fate of the malate depended upon the photorespiratory state of the plant. In low photorespiration Hydrilla, malate label decreased rapidly during an unlabeled chase, whereas labeling of sucrose and starch increased. In contrast, for high photorespiration Hydrilla, malate labeling continued to increase during a 2-hour chase. Thus, malate formation occurs in both photorespiratory states, but reduced photorespiration results when this malate is utilized in the light. Unlike Hydrilla, in low photorespiration Myriophyllum, 14C incorporation was via the Calvin cycle, and less than 10% was in C4 acids.

Ethoxyzolamide, a carbonic anhydrase inhibitor and a repressor of the low photorespiratory state, increased the label in glycolate, glycine, and serine of Myriophyllum. Isonicotinic acid hydrazide increased glycine labeling of low photorespiration Myriophyllum from 14 to 25%, and from 12 to 48% with high photorespiration plants. Similar trends were observed with Hydrilla. Increasing O2 increased the per cent [14C]glycine and the O2 inhibition of photosynthesis in Myriophyllum. In low photorespiration Myriophyllum, glycine labeling and O2 inhibition of photosynthesis were independent of the CO2 level, but in high photorespiration plants the O2 inhibition was competitively decreased by CO2. Thus, in low but not high photorespiration plants, glycine labeling and O2 inhibition appeared to be uncoupled from the external [O2]/[CO2] ratio.

These data indicate that the low photorespiratory states of Hydrilla and Myriophyllum are mediated by different mechanisms, the former being C4-like, while the latter resembles that of low CO2-grown algae. Both may require carbonic anhydrase to enhance the use of inorganic carbon for reducing photorespiration.

  相似文献   

12.
Glycine decarboxylase has been successfully solubilized from pea (Pisum sativum) leaf mitochondria as an acetone powder. The enzyme was dependent on added dithiothreitol and pyridoxal phosphate for maximal activity. The enzyme preparation could catalyze the exchange of CO2 into the carboxyl carbon of glycine, the reverse of the glycine decarboxylase reaction by converting serine, NH4+, and CO2 into glycine, and 14CO2 release from [1-14C]glycine. The half-maximal concentrations for the glycine-bicarbonate exchange reaction were 1.7 millimolar glycine, 16 millimolar NaH14CO2, and 0.006 millimolar pyridoxal phosphate. The enzyme (glycine-bicarbonate exchange reaction) was active in the assay conditions for 1 hour and could be stored for over 1 month. The enzymic mechanism appeared similar to that reported for the enzyme from animals and bacteria but some quantitative differences were noted. These included the tenacity of binding to the mitochondrial membrane, the concentration of pyridoxal phosphate needed for maximum activity, the requirement for dithiothreitol for maximum activity, and the total amount of activity present. Now that this enzyme has been solubilized, a more detailed understanding of this important step in photorespiration should be possible.  相似文献   

13.
Effects of Certain Inhibitors on Photorespiration by Wheat Leaf Segments   总被引:1,自引:0,他引:1  
The effect on the carbon metabolism of wheat leaf segments ofcertain inhibitors of photorespiration was studied. Sodium 2-hydroxy-3-butynoatesupplied for 40 min resulted in accumulation of 14C in glycolicacid with only a 7% inhibition of photosynthesis; when suppliedfor 90 min, photosynthesis was inhibited by 47%. When 14CO2was replaced by 1000 vpm 12CO2, radioactivity in glycine decreasedbut increased more rapidly in sucrose with less release of 14CO2.Isonicotinyl hydrazide (INH) inhibited photosynthesis from 14CO2by 50% and glycine replaced sucrose as the main product. When,after 15 min, 14CO2 was replaced by 150 vpm 12CO2, in the presenceof INH less 14CO2 was released, 14CO in glycine decreased moreslowly, and less [14CO]sucrose accumulated. Glycidate (potassium2,3-epoxypropionate) at 2 mM had no effect on photosyntheticrate and little effect on carbon metabolism; 20 mM glycidateinhibited photosynthesis by 64% and resulted in less radioactivityin glycine, more in phosphate esters, and less 14CO2 released.When photosynthesis was measured in 1000 vpm CO2 the inhibitorsgave smaller effects on metabolism than during photosynthesisfrom 150 vpm 14CO2 but 20 mM glycidate still resulted in a 42%inhibition of photosynthesis. When U- [14CO]glycerate was appliedto leaf segments in air with 320 vpm 14CO2 the total uptakeof glycerate was not changed by the inhibitors. INH and glycidateboth decreased the amount of glycerate metabolised. More 14COaccumulated in glycine in the presence of INH and in phosphateesters and serine in the presence of glycidate. Hydroxybutynoateincreased the production of glycolate from glycerate but didnot affect the total amount of glycerate metabolised. Although all three inhibitors affected photorespiratory metabolismnone stimulated photosynthesis. The results are consistent withthe main release of CO2 in photorespiration arising from theconversion of glycine to serine.  相似文献   

14.
The effect of methionine supplementation on glycine and serine metabolism was studied in vitamin B-12-deficient rats which received only 0.2% methionine in the diet. In the perfused liver, incorporation of the C-2 of glycine to the C-3 of serine was increased by addition of methionine to the perfusate. The oxidation of [1-14C]glycine to 14CO2 was however depressed. Unlike methionine, glycine did not have any significant effect on the liver folate coenzyme distribution. Oxidation of [3-14C]serine to 14CO2 both in vivo and in perfused liver was increased by methionine. A major portion of the C-3 radioactivity however was recovered in glucose. Data presented indicate that the rate of oxidation of [2-14C]histidine to 14CO2 is more sensitive indicator of folate deficiency than the rate of oxidation of [3-14C] serine to 14CO2 although both are presumably tetrahydrofolate dependent.  相似文献   

15.
After a 5-second exposure of illuminated bermudagrass (Cynodon dactylon L. var. `Coastal') leaves to 14CO2, 84% of the incorporated 14C was recovered as aspartate and malate. After transfer from 14CO2-air to 12CO2-air under continuous illumination, total radioactivity decreased in aspartate, increased in 3-phosphoglyceric acid and alanine, and remained relatively constant in malate. Carbon atom 1 of alanine was labeled predominantly, which was interpreted to indicate that alanine was derived from 3-phosphoglyceric acid. The activity of phosphoenolpyruvate carboxylase, alkaline pyrophosphatase, adenylate kinase, pyruvate-phosphate dikinase, and malic enzyme in bermudagrass leaf extracts was distinctly higher than those in fescue (Festuca arundinacea Schreb.), a reductive pentose phosphate cycle plant. Assays of malic enzyme activity indicated that the decarboxylation of malate was favored. Both malic enzyme and NADP+-specific malic dehydrogenase activity were low in bermudagrass compared to sugarcane (Saccharum officinarum L.). The activities of NAD+-specific malic dehydrogenase and acidic pyrophosphatase in leaf extracts were similar among the plant species examined, irrespective of the predominant cycle of photosynthesis. Ribulose-1, 5-diphosphate carboxylase in C4-dicarboxylic acid cycle plant leaf extracts was about 60%, on a chlorophyll basis, of that in reductive pentose phosphate cycle plants.  相似文献   

16.
Three allelic mutants of Arabidopsis thaliana which lack mitochondrial serine transhydroxymethylase activity due to a recessive nuclear mutation have been characterized. The mutants were shown to be deficient both in glycine decarboxylation and in the conversion of glycine to serine. Glycine accumulated as an end product of photosynthesis in the mutants, largely at the expense of serine, starch, and sucrose formation. The mutants photorespired CO2 at low rates in the light, but this evolution of photorespiratory CO2 was abolished by provision of exogenous NH3. Exogenous NH3 was required by the mutants for continued synthesis of glycine under photorespiratory conditions. These and related results with wild-type Arabidopsis suggested that glycine decarboxylation is the sole site of photorespiratory CO2 release in wild-type plants but that depletion of the amino donors required for glyoxylate amination may lead to CO2 release from direct decarboxylation of glyoxylate. Photosynthetic CO2 fixation was inhibited in the mutants under atmospheric conditions which promote photorespiration but could be partially restored by exogenous NH3. The magnitude of the NH3 stimulation of photosynthesis indicated that the increase was due to the suppression of glyoxylate decarboxylation. The normal growth of the mutants under nonphotorespiratory atmospheric conditions indicates that mitochondrial serine transhydroxymethylase is not required in C3 plants for any function unrelated to photorespiration.  相似文献   

17.
The metabolism of fixed 14CO2 and the utilization of the C-4 carboxyl of malate and aspartate were examined during photosynthetic induction in Flaveria trinervia, a C4 dicot of the NADP-malic enzyme subgroup. Pulse/chase experiments indicated that both malate and aspartate appeared to function directly in the C4 cycle at all times during the induction period (examined after 30 seconds, 5 minutes and 20 minutes illumination). However, the rate of loss of 14C-label from the C-4 position of malate plus aspartate was relatively slow after 30 seconds of illumination, compared to treatments after 5 or 20 minutes of illumination. Similarly, the appearance of label in other photosynthetic products (e.g. 3-phosphoglycerate, sugar phosphates, alanine) during the chase periods was generally slower after only 30 seconds of leaf illumination, compared to that after 5 of 20 minutes illumination. This may be due to the lower rate of photosynthesis after 30 seconds illumination. The appearance of label in carbons 1→3 of each C4 acid during the chase periods was relatively slow after either 30 seconds or 5 minutes illumination, while there was a relatively rapid accumulation of label in carbons 1→3 of both C4 acids after 20 minutes illumination. Thus, while the turnover rate of the 14C-4 label in both C4 acids increased only during the first 5 minutes of the induction period, only later during induction is there an increased rate of appearance of label in other carbon atoms of the C4 acids. The implied source of 14C for labeling of the 1→3 positions of the C4 acids is an apparent carbon flux from 3-phosphoglycerate of the reductive pentose phosphate pathway to phosphoenolpyruvate of the C4 cycle.  相似文献   

18.
When the CO2 concentration to which Medicago sativa L. var. El Unico leaflets were exposed was increased from half-saturation to saturation (doubled rate of photosynthesis), glycolate and glycine production apparently decreased due to inhibition of a portion of the glycolate pathway. Serine and glycerate production was not inhibited. We conclude that serine and glycerate were made from 3-phosphoglycerate and not from glycolate and that the conversion of glycine to serine may not be the major source of photorespiratory CO2 in alfalfa. In investigations of glycolate and photorespiratory metabolism, separate labeling data should be obtained for glycine and serine as those two amino acids may be produced from different precursors and respond differently to environmental perturbations. The increased photosynthetic rate (at saturating CO2) resulted in greater labeling of both soluble and insoluble products. Sucrose labeling increased sharply, but there was no major shift of tracer carbon flow into sucrose relative to other metabolites. The flow of carbon from the reductive pentose phosphate cycle into the production of tricarboxylic acid cycle intermediates and amino acids increased. Only small absolute increases occurred in steady-state pool sizes of metabolites of the reductive pentose phosphate cycle at elevated CO2, providing further evidence that the cycle is well regulated.  相似文献   

19.
The effects of added glycine hydroxamate on the photosynthetic incorporation of 14CO2 into metabolites by isolated mesophyll cells of spinach (Spinacia oleracea L.) was investigated under conditions favorable to photorespiratory (PR) metabolism (0.04% CO2 and 20% O2) and under conditions leading to nonphotorespiratory (NPR) metabolism (0.2% CO2 and 2.7% O2). Glycine hydroxamate (GH) is a competitive inhibitor of the photorespiratory conversion of glycine to serine, CO2 and NH4+. During PR fixation, addition of the inhibitor increased glycine and decreased glutamine labeling. In contrast, labeling of glycine decreased under NPR conditions. This suggests that when the rate of glycolate synthesis is slow, the primary route of glycine synthesis is through serine rather than from glycolate. GH addition increased serine labeling under PR conditions but not under NPR conditions. This increase in serine labeling at a time when glycine to serine conversion is partially blocked by the inhibitor may be due to serine accumulation via the “reverse” flow of photorespiration from 3-P-glycerate to hydroxypyruvate when glycine levels are high. GH increased glyoxylate and decreased glycolate labeling. These observations are discussed with respect to possible glyoxylate feedback inhibition of photorespiration.  相似文献   

20.
The activities of key C4 enzymes in gel-filtered, whole-leaf extracts and the photosynthetic characteristics for reciprocal F1 hybrids of Flaveria pringlei (C3) and F. brownii (C4-like species) were measured to determine whether any inherited C4-photosynthetic traits are responsible for their reduced CO2 compensation concentration values (AS Holaday, S Talkmitt, ME Doohan Plant Sci 41: 31-39). The activities of phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, and NADP-malic enzyme (ME) for the reciprocal hybrids are only about 7 to 17% of those for F. brownii, but are three- to fivefold greater than the activities for F. pringlei. The low activities of these enzymes in the hybrids appear to be the result of a partial dominance of F. pringlei genes over certain F. brownii genes. However, no such dominance occurs with respect to the expression of genes for NADP-malate dehydrogenase, which is as active in the hybrids as in F. brownii. In contrast to the situation with the enzymes above, cytoplasmic factors appear to determine the inheritance of NAD-ME. The NAD-ME activity in each hybrid is comparable to that in the respective maternal parent. Pulse-chase 14CO2 incorporation analyses at ambient CO2 levels indicate that the hybrids initially assimilate 7 to 9% of the total assimilated CO2 into C4 acids as compared to 3.5% for F. pringlei. In the hybrids, the percentage of 14C in malate decreases from an average of 6.5 to 2.1% after a 60-second chase in 12CO2/air. However, this apparent C4-cycle activity is too limited or inefficient to substantially alter CO2 exchange from that in F. pringlei, since the values of net photosynthesis and O2 inhibition of photosynthesis are similar for the hybrids and F. pringlei. Also, the ratio of the internal to the external CO2 concentration and the initial slopes of the plot of CO2 concentration versus net photosynthesis are essentially the same for the hybrids and F. pringlei. At 45 micromoles CO2 per mole and 0.21 mole O2 per mole, the hybrids assimilate nearly fivefold more CO2 into C4 acids than does F. pringlei. Some turnover of the malate pool occurs in the hybrids, but the labelling of the photorespiratory metabolites, glycine and serine, is the same in these plants as it is in F. pringlei. Thus, although limited C4-acid metabolism may operate in the hybrids, we conclude that it is not effective in altering O2 inhibition of CO2 assimilation. The ability of the hybrids to assimilate more CO2 via phosphoenolpyruvate carboxylase at low levels of CO2 than does F. pringlei may result in an increased rate of reassimilation of photorespiratory CO2 and CO2 compensation concentrations below that of their C3 parent. If the hybrids do possess a limited C4 cycle, it must operate intracellularly. They are not likely to have inherited an intercellular compartmentation of C4 enzymes, since F. brownii has incomplete compartmentation of key C3 and C4 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号