首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMPA glutamate ion channels are tetrameric receptors in which activation to form the open channel depends on the binding of possibly multiple glutamate molecules. However, it is unclear whether AMPA receptors bound with a different number of glutamate molecules (i.e. one being the minimal and four being the maximal number of glutamate molecules) open the channels with different kinetic constants. Using a laser pulse photolysis technique that provides microsecond time resolution, we investigated the channel-opening kinetic mechanism of a nondesensitizing AMPA receptor, i.e. GluR1Q(flip) L497Y or a leucine-to-tyrosine substitution mutant, in the entire range of glutamate concentrations to ensure receptor saturation. We found that the minimal number of glutamate molecules required to bind to the receptor and to open the channel is two (or n = 2), and that the entire channel-opening kinetics can be adequately described by just one channel-opening rate constant, k(op), which correlates to n = 2. This result suggests that higher receptor occupancy (n = 3 and 4) does not give rise to different k(op) values or, at least, not appreciably if the k(op) values are different. Furthermore, compared with the wild-type receptor (Li, G., and Niu, L. (2004) J. Biol. Chem. 279, 3990-3997), the channel-opening and channel-closing rate constants of the mutant are 1.5- and 13-fold smaller, respectively. Thus, the major effect of this mutation is to decrease the channel-closing rate constant by stabilizing the open channel conformation.  相似文献   

2.
Ramakrishnan L  Hess GP 《Biochemistry》2005,44(23):8523-8532
The gamma-aminobutyric acid(A) (GABA(A)) receptor, a major inhibitory neurotransmitter receptor, belongs to a family of membrane-bound proteins that regulate signal transmission between approximately 10(12) cells of the nervous system. It plays a major role in many neurological disorders, including epilepsy. It is the target of many pharmacological agents, including the convulsant picrotoxin. Here, we present the mechanism of inhibition by picrotoxin of the rat alpha1beta2gamma2L GABA(A) receptor investigated using rapid kinetic techniques in combination with whole-cell current recordings. The following new results were obtained by using transient kinetic techniques, the cell-flow method and the laser-pulse photolysis (LaPP) technique with a microsecond to millisecond time resolution. (i) The apparent dissociation constant of picrotoxin for the open-channel form of the receptor was approximately 5 times higher than that of the closed-channel form. (ii) Picrotoxin increased the channel-closing rate constant (k(cl)) approximately 4-fold, while the rate constant for channel opening (k(op)) remained essentially unaffected. (iii) The mechanism indicates that picrotoxin binds to an allosteric site of the receptor with higher affinity for the closed-channel form than for the open-channel form and thereby inhibits the receptor by decreasing 4-fold its channel-opening equilibrium constant [Phi(I)(-)(1) = k(op(I))/k(cl(I))]. (iv) The mechanism further indicates that compounds that bind with equal affinity to the picrotoxin-binding site on the open-channel form of the receptor and the closed-channel form will not affect the channel-opening equilibrium and can, therefore, displace picrotoxin and prevent inhibition of the GABA(A) receptor by picrotoxin. Such compounds may be therapeutically useful in counteracting the effects of compounds and diseases that unfavorably affect the channel-opening equilibrium of the receptor channel.  相似文献   

3.
V Jayaraman  S Thiran  G P Hess 《Biochemistry》1999,38(35):11372-11378
The gamma-aminobuytric acid(A) (GABA(A)) receptor is a membrane-bound protein that mediates signal transmission between neurons through formation of chloride ion channels. GABA is the activating ligand, which upon binding to the receptor triggers channel opening in the microsecond time domain and reversible desensitization of the receptor in the millisecond time region. We have investigated the channel-opening mechanism for this receptor in rat hippocampal neurons before the protein desensitizes by using a rapid flow method (cell-flow) with a 10 ms time resolution and a laser-pulse photolysis technique with a approximately 30 micros time resolution to determine the rate and equilibrium constants for channel opening and closing. Two different forms of the receptor, namely, a rapidly and a slowly desensitizing form, exist in the rat hippocampal cells and are characterized by their different rates for desensitization. At 250 microM GABA the rate constant for desensitization was 2.3 +/- 0.4 s(-)(1) for the rapidly desensitizing form and 0.4 +/- 0.1 s(-)(1) for the slowly desensitizing form. The dissociation constant of GABA from the site controlling channel opening was 100 +/- 40 microM for the rapidly desensitizing form and 120 +/- 60 microM for the slowly desensitizing form. The rate constants for channel closing did not differ significantly for the two forms, 85 +/- 20 s(-)(1) for the rapidly desensitizing and 100 +/- 60 s(-)(1) for the slowly desensitizing form. However, the channel-opening rate constant differed by a factor of 3, 1840 +/- 160 s(-)(1) for the rapidly desensitizing and 6700 +/- 330 s(-)(1) for the slowly desensitizing form. This difference in the rate constant for channel opening for the two forms, determined by the laser-pulse photolysis technique, is reflected as a shift in the channel-opening equilibrium constant, which is 7 +/- 5 and 20 +/- 15 for the rapidly and slowly desensitizing forms respectively, determined by the cell-flow method. These constants, together with the concentration of GABA and the concentration of receptor sites in the membrane, determine the number of channels that open as a function of GABA concentration, and the rate at which they open and close. These constants play an important role in determining the rate of the transmembrane ion flux and, therefore, the receptor-controlled changes in transmembrane voltage that trigger signal transmission.  相似文献   

4.
Opening of a ligand-gated ion channel is the step at which the binding of a neurotransmitter is transduced into the electrical signal by allowing ions to flow through the transmembrane channel, thereby altering the postsynaptic membrane potential. We report the kinetics for the opening of the GluR1Qflip channel, an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit of the ionotropic glutamate receptors. Using a laser-pulse photolysis technique that permits glutamate to be liberated photolytically from gamma-O-(alpha-carboxy-2-nitrobenzyl)glutamate (caged glutamate) with a time constant of approximately 30 micros, we show that, after the binding of glutamate, the channel opened with a rate constant of (2.9 +/- 0.2) x 10(4) s(-1) and closed with a rate constant of (2.1 +/- 0.1) x 10(3) s(-1). The observed shortest rise time (20-80% of the receptor current response), i.e. the fastest time by which the GluR1Qflip channel can open, was predicted to be 35 micros. This value is three times shorter than those previously reported. The minimal kinetic mechanism for channel opening consists of binding of two glutamate molecules, with the channel-opening probability being 0.93 +/- 0.10. These findings identify GluR1Qflip as one of the temporally efficient receptors that transduce the binding of chemical signals (i.e. glutamate) into an electrical impulse.  相似文献   

5.
Li G  Pei W  Niu L 《Biochemistry》2003,42(42):12358-12366
AMPA receptors mediate fast excitatory neurotransmission in the central nervous system. GluR2 is an AMPA receptor subunit that controls some key heteromeric AMPA receptor properties, such as calcium permeability. The kinetic properties of GluR2, relevant to the time scale of its channel opening, however, are poorly understood. Here, to measure the channel-opening kinetics, we use a laser-pulse photolysis technique, which permits glutamate to be liberated photolytically from gamma-O-(alpha-carboxy-2-nitrobenzyl)glutamate (caged glutamate) with a time constant of approximately 30 micros. We show that GluR2Q(flip), an unedited and Ca(2+) permeable isoform, is by far the fastest ligand-gated channel with the channel-opening and -closing rate constants being (8.0 +/- 0.49) x 10(4) and (2.6 +/- 0.20) x 10(3) s(-1), respectively. Therefore, the shortest rise time (20-80% of the receptor current response) or the fastest observed time by which the GluR2Q(flip) channel can open is predicted to be 17 micros. The minimal kinetic mechanism for the channel opening is further consistent with the binding of two glutamate molecules with the channel-opening probability of 0.96. These results suggest that GluR2 is a temporally, highly efficient receptor to transduce the binding of chemical signals (i.e., glutamate) into an electrical impulse.  相似文献   

6.
Li G  Oswald RE  Niu L 《Biochemistry》2003,42(42):12367-12375
GluR6 is an ionotropic glutamate receptor subunit of the kainate subtype. It plays an essential role in synaptic plasticity and epilepsy. We expressed this recombinant receptor in HEK-293 cells and characterized the glutamate-induced channel-opening reaction, using a laser-pulse photolysis technique with the caged glutamate (gamma-O-(alpha-carboxy-2-nitrobenzyl)glutamate). This technique permits glutamate to be liberated photolytically from the caged glutamate with a time constant of approximately 30 micros. Prior to laser photolysis, the caged glutamate did not activate the GluR6 channel, nor did it inhibit or potentiate the glutamate response. At the transmembrane voltage of -60 mV, pH 7.4 and 22 degrees C, the channel-opening and -closing rate constants were determined to be (1.1 +/- 0. 4) x 10(4) and (4.2 +/- 0.2) x 10(2) s(-1), respectively. The intrinsic dissociation constant of glutamate and the channel-opening probability were found to be 450 +/- 200 microM and 0.96, respectively. These constants are derived from a minimal kinetic mechanism of the channel activation involving the binding of two glutamate molecules. This mechanism describes the time course of the open-channel form of the receptor as a function of glutamate concentration. On the basis of the channel-opening rate constants obtained, the shortest rise time (20-80% of the receptor current response) or the fastest time by which the GluR6Q channel can open is predicted to be 120 micros. The open-channel form of the receptor determines the transmembrane voltage change, which in turn controls synaptic signal transmission between two neurons. The comparison of the channel-opening kinetic rate constants between GluR6Q and GluR2Q(flip), reported in the companion paper, suggests that at a glutamate concentration of 100 microM, for instance, the integrated neuronal signal will be dominated by a slower GluR6Q receptor response, as compared to the GluR2Q(flip) component.  相似文献   

7.
Krivoshein AV  Hess GP 《Biochemistry》2006,45(38):11632-11641
A mechanism for the alleviation of the malfunction of a mutated (gamma2(K289M)) epilepsy-linked gamma-aminobutyric acid (GABA) neurotransmitter receptor by phenobarbital is presented. Compared to the wild-type receptor, the GABA-induced current is considerably reduced in the mutated (alpha1beta2gamma2(K289M)) epilepsy-linked GABA(A) receptor [Baulac, S., Huberfeld, G., Gurfinkel-An, I., Mitropoulou, G., Beranger, A., Prud'homme, J. F., Baulac, M., Brice, A., Bruzzone, R., and LeGuer, E. (2001) Nat. Genet. 28, 46-48]. This is due to an impaired GABA-induced equilibrium between the closed- and open-channel forms of the receptor [Ramakrishnan, L., and Hess, G. P. (2004) Biochemistry 43, 7534-7540]. We report that a barbiturate anticonvulsant, phenobarbital, alleviates the effect of this mutation. Transient kinetic techniques with a millisecond-to-microsecond time resolution and the wild-type and mutated receptors recombinantly expressed in mammalian HEK293T cells were used. The efficacy of phenobarbital in potentiating currents elicited by a saturating concentration of GABA is about 3 times higher for the mutated receptor than for the wild type. The results indicate that phenobarbital alleviates the malfunction of the mutated receptor by increasing its channel-opening equilibrium constant (phi(-1) = k(op)/k(cl)) by about an order of magnitude. Phenobarbital changes the channel-opening rate constant (k(op)) by less than 2-fold but decreases the channel-closing rate constant (k(cl)) 8-fold. The dissociation constant of GABA is unaffected. The experiments also indicate that at saturating concentrations of GABA the mutated (gamma2(K289M)) form of the alpha1beta2gamma2 GABA(A) receptor is well suited for a rapid and simple screening of positive allosteric modulators of the receptor.  相似文献   

8.
Li G  Sheng Z  Huang Z  Niu L 《Biochemistry》2005,44(15):5835-5841
AMPA-type ionotropic glutamate receptors mediate the majority of fast excitatory neurotransmission in the mammalian central nervous system and are essential for brain functions, such as memory and learning. Dysfunction of these receptors has been implicated in a variety of neurological diseases. Using a laser-pulse photolysis technique, we investigated the channel opening mechanism for GluRD(flip) or GluR4(flip) (i.e., the flip isoform of GluRD), an AMPA receptor subunit. The minimal kinetic mechanism for channel opening is consistent with binding of two glutamate molecules per receptor complex. The GluRD(flip) channel opens with a rate constant of (6.83 +/- 0.74) x 10(4) s(-1) and closes with a rate constant of (3.35 +/- 0.17) x 10(3) s(-1). On the basis of these rate constants, the channel opening probability is calculated to be 0.95 +/- 0.12. Furthermore, the shortest rise time (20-80% of the receptor current response to glutamate) is predicted to be 20 micros, which is approximately 8 times shorter than the previous estimate. These findings suggest that the kinetic property of GluRD(flip) is similar to that of GluR2Q(flip), another fast-activating AMPA receptor subunit.  相似文献   

9.
V Jayaraman  P N Usherwood  G P Hess 《Biochemistry》1999,38(35):11406-11414
The mechanism of inhibition of a nicotinic acetylcholine receptor (nAChR) in BC(3)H1 muscle cells by philanthotoxin-343 (PhTX-343), a synthetic analogue of philanthotoxin-433, a wasp toxin, was investigated using a laser-pulse photolysis technique with microsecond time resolution and in a carbamoylcholine concentration range of 20-100 microM and PhTX-343 concentration range of 0-200 microM. The rate constant for nAChR channel opening determined by the chemical kinetic techniques decreased with increasing PhTX-343 concentration, whereas there was no significant effect on the rate constant for channel closing. The resulting decrease in the channel-opening equilibrium constant accounted quantitatively for the inhibition of the receptor by the toxin. Single-channel current measurements suggest an additional step in which the open channel:inhibitor complex isomerizes to a nonconducting receptor form. Cell-flow experiments with a time resolution of 10 ms indicate that this isomerization step is only important at very high inhibitor concentrations. The inhibitor binds to the open-channel receptor form, with an affinity that is at least 5 times smaller than that for the closed-channel form. This indicates that receptor inhibition mainly involves the binding of PhTX-343 to the closed-channel form of the receptor. PhTX-343, and an analogue of this polyamine, had no effect when applied to the inside of the cell membrane. However, there was significant inhibition of the nAChR when these compounds were applied to the outside of the cell membrane, indicating an extracellular site for inhibition. Furthermore, increasing the transmembrane potential results in a decrease in the ability of PhTX-343 to inhibit the receptor. This observation is related to the voltage dependence of the effect of PhTX-343 on the rate constant for nAChR channel opening with increasing transmembrane voltage (-60 to 50 mV). This suggests that the voltage dependence of inhibition mainly reflects the effect of transmembrane voltage on the rate constant of channel opening and, therefore, the channel-opening equilibrium constant. PhTX-343 competes with cocaine and procaine for its binding site. The finding that this toxin, which binds to a common inhibitory site with compounds such as cocaine, exerts its effect by decreasing the channel-opening equilibrium constant suggests an approach for the development of therapeutic agents. A compound that binds to this regulatory site but does not affect the channel-opening equilibrium constant may be developed. Such a compound can displace an abused drug such as cocaine and thereby alleviate the toxic effect of this compound on the organism.  相似文献   

10.
The activation and desensitization kinetics of the human alpha(1)-homooligomeric glycine receptor, which was transiently expressed in HEK 293 cells, were studied with a 100-microseconds time resolution to determine the rate and equilibrium constants of individual receptor reaction steps. Concentration jumps of the activating ligands glycine and beta-alanine were initiated by photolysis of caged, inactive precursors and were followed by neurotransmitter binding, receptor-channel opening, and receptor desensitization steps that were separated along the time axis. Analysis of the ligand concentration-dependence of these processes allows the determination of 1) the rate constants of glycine binding, k(+1) approximately 10(7) M(-1) s(-1), and dissociation, k(-1) = 1900 s(-1); 2) the rates of receptor-channel opening, k(op) = 2200 s(-1), and closing, k(cl) = 38 s(-1); 3) the receptor desensitization rate, alpha = 0.45 s(-1); 4) the number of occupied ligand binding sites necessary for receptor-channel activation and desensitization, n >/= 3; and 5) the maximum receptor-channel open probability, p(0) > 0.95. The kinetics of receptor-channel activation are insensitive to the transmembrane potential. A general model for glycine receptor activation explaining the experimental data consists of a sequential mechanism based on rapid ligand-binding steps preceding a rate-limiting receptor-channel opening reaction and slow receptor desensitization.  相似文献   

11.
Pei W  Huang Z  Niu L 《Biochemistry》2007,46(7):2027-2036
Ample evidence from earlier studies of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, GluR3 included, suggests that alternative splicing not only enriches AMPA receptor diversity but also, more importantly, creates receptor variants that are functionally different. However, it is not known whether alternative splicing affects the receptor channel opening that occurs in the microsecond time domain. Using a laser-pulse photolysis technique combined with whole-cell recording, we characterized the channel opening rate process for two alternatively spliced variants of GluR3, i.e., GluR3flip and GluR3flop. We show that the alternative splicing that generates flip and flop variants of GluR3 receptors regulates the channel opening process by controlling the rate of channel closing but not the rate of channel opening or the glutamate binding affinity. Specifically, the flop variant closes its channel almost 4-fold faster than the flip variant. We therefore propose that the function of the flip-flop sequence module in the channel opening process of AMPA receptors is to stabilize the open channel conformation, presumably by its pivotal structural location. Furthermore, a comparison of the flip isoform among all AMPA receptor subunits, based on the magnitude of the channel opening rate constant, suggests that GluR3 is kinetically more similar to GluR2 and GluR4 than to GluR1.  相似文献   

12.
K R Gee  L Niu  K Schaper  V Jayaraman  G P Hess 《Biochemistry》1999,38(10):3140-3147
The amino acid L-glutamate is a major neurotransmitter at excitatory synapses within the central nervous system. Neuronal responses to glutamate are mediated by at least three receptor types, one of which is the NMDA subtype, named for its specific ligand N-methyl-D-aspartic acid. Neurotransmitter receptors are transmembrane proteins that can form ion channels upon binding a specific ligand and are involved in many physiological activities of the brain and in some neurological disorders. Elucidating the mechanisms of the formation of transmembrane receptor-channels and of receptor regulation and inhibition is necessary for understanding nervous system function and for designing potential therapeutic agents. This has been hampered by the lack of rapid reaction techniques suitable for investigating protein-mediated reactions on cell surfaces. Recently a laser-pulse photolysis technique was developed to study the chemical reactions of channel-forming receptor proteins in the microsecond-to-millisecond time region. To apply the technique to NMDA1 receptors a photolabile NMDA precursor (beta-DNB NMDA) was synthesized. In this precursor the side chain carboxylate was protected as a photosensitive 2,2'-dinitrobenzhydryl ester. Photolysis with 308 nm laser light generated free NMDA with a time constant of 4.2 +/- 0.1 microseconds at pH 7 and a photolysis quantum yield of 0.18 +/- 0.05. In rat hippocampal neurons the beta-DNB NMDA (250 microM) neither activated endogenously expressed receptors nor potentiated or inhibited the NMDA response. Equilibration of hippocampal neurons in the whole-cell current recording mode with 250 microM caged precursor followed by a pulse of 333 nm laser light resulted in a rapid current rise with a rate constant of 100 s-1 due to opening of NMDA-activated receptor-channels. The caged NMDA precursor described here now makes it possible to investigate the mechanism of NMDA receptors in the micro- to millisecond time region.  相似文献   

13.
In ionotropic glutamate receptors, agonist binding occurs in a conserved clam shell-like domain composed of the two lobes D1 and D2. Docking of glutamate into the binding cleft promotes rotation in the hinge region of the two lobes, resulting in closure of the binding pocket, which is thought to represent a prerequisite for channel gating. Here, we disrupted D1D2 interlobe interactions in the NR2A subunit of N-methyl-d-aspartate (NMDA) receptors through systematic mutation of individual residues and studied the influence on the activation kinetics of currents from NR1/NR2 NMDA receptors heterologously expressed in HEK cells. We show that the mutations affect differentially glutamate binding and channel gating, depending on their location within the binding domain, mainly by altering k(off) and k(cl), respectively. Whereas impaired stability of glutamate in its binding site is the only effect of mutations on one side of the ligand binding pocket, close to the hinge region, alterations in gating are the predominant consequence of mutations on the opposite side, at the entrance of the binding pocket. A mutation increasing D1D2 interaction at the entrance of the pocket resulted in an NMDA receptor with an increased open probability as demonstrated by single channel and whole cell kinetic analysis. Thus, the results indicate that agonist-induced binding domain closure is itself a complex process, certain aspects of which are coupled either to binding or to gating. Specifically, we propose that late steps of domain closure, in kinetic terms, represent part of channel gating.  相似文献   

14.
O Tour  H Parnas    I Parnas 《Biophysical journal》1998,74(4):1767-1778
We have studied the voltage sensitivity of glutamate receptors in outside-out patches taken from crayfish muscles. We found that single-channel conductance, measured directly at the single-channel level, increases as depolarization rises. At holding potentials from -90 mV to approximately 20 mV, the conductance is 109 pS. At holding potentials positive to 20 mV, the conductance is 213 pS. This increase in single-channel conductance was also observed in cell-attached patches. In addition, desensitization, rise time, and the dose-response curve were all affected by depolarization. To further clarify these multifaceted effects, we evaluated the kinetic properties of single-channel activity recorded from cell-attached patches in hyperpolarization (membrane potential around -75 mV) and depolarization (membrane potential approximately 105 mV). We found that the glutamate dissociation rate constant (k_) was affected most significantly by membrane potential; it declined 6.5-fold under depolarization. The rate constant of channel closing (k(c)) was also significantly affected; it declined 1.8-fold. The rate constant of channel opening (k(o)) declined only 1.2-fold. The possible physiological significance of the depolarization-mediated changes in the above rate constants is discussed.  相似文献   

15.
Han Y  Wang C  Park JS  Niu L 《Biochemistry》2012,51(3):761-768
GluK1 is a kainate receptor subunit in the ionotropic glutamate receptor family and can form functional channels when expressed, for instance, in HEK-293 cells. However, the channel-opening mechanism of GluK1 is poorly understood. One major challenge to studying the GluK1 channel is its apparent low level of surface expression, which results in a low whole-cell current response even to a saturating concentration of agonist. A low level of surface expression is thought to be contributed by an endoplasmic reticulum (ER) retention signal sequence. When this sequence motif is present as in the C-terminus of wild-type GluK1-2b, the receptor is significantly retained in the ER. Conversely, when this sequence is either lacking, as in wild-type GluK1-2a (i.e., a different alternatively spliced isoform at the C-terminus), or disrupted, as in a GluK1-2b mutant (i.e., R896A, R897A, R900A, and K901A), there is a higher level of surface expression and a greater whole-cell current response. Here we characterize the channel-opening kinetic mechanism for these three GluK1 receptors expressed in HEK-293 cells by using a laser-pulse photolysis technique. Our results show that wild-type GluK1-2a, wild-type GluK1-2b, and the GluK1-2b mutant have identical channel opening and channel closing rate constants. These results indicate that the amino acid sequence near or within the C-terminal ER retention signal sequence, which affects receptor trafficking and/or expression, does not affect channel gating properties. Furthermore, as compared with the GluK2 kainate receptor, the GluK1 channel is faster to open, close, and desensitize by at least 2-fold, yet the EC(50) value of GluK1 is similar to that of GluK2.  相似文献   

16.
The amino acid glutamate, synthesized in the mitochondria, serves multiple functions, including acting as a neurotransmitter and participating in degradative and synthetic pathways. We have previously shown that glutamate modulates the channel activity of bilayer-reconstituted voltage-dependent anion channel (VDAC). In this study, we demonstrate that glutamate also modulates the opening of the mitochondrial permeability transition pore (PTP), of which VDAC is an essential component. Glutamate inhibited PTP opening, as monitored by transient Ca2+ accumulation, mitochondrial swelling and accompanying release of cytochrome c. Exposure to L-glutamate delayed the onset of PTP opening up to 3-times longer, with an IC50 of 0.5 mM. Inhibition of PTP opening by L-glutamate is highly specific, not being mimicked by D-glutamate, L-glutamine, L-aspartate, or L-asparagine. The interaction of L-glutamate with VDAC and its inhibition of VDAC's channel activity and PTP opening suggest that glutamate may also act as an intracellular messenger in the mitochondria-mediated apoptotic pathway.  相似文献   

17.
We report on a photolabile protecting (caging) group that is new for carboxylic acids. Unlike previously used caging groups for carboxylic acids, it can be photolyzed rapidly and efficiently in the visible wavelength region. The caging group 7-N,N-diethyl aminocoumarin (DECM) was used to cage the gamma-carboxyl group of glutamic acid, which is also a neurotransmitter. The caged compound has a major absorption band with a maximum at 390 nm (epsilon(390) = 13651 M(-)(1) cm(-)(1)). Experiments are performed at 400 nm (epsilon(400) = 12232 M(-)(1) cm(-)(1)) and longer wavelengths. DECM-caged glutamate is water soluble and stable at pH 7.4 and 22 degrees C. It photolyzes rapidly in aqueous solution to release glutamic acid within 3 micros with a quantum yield of 0.11 +/- 0.008 in the visible region. In whole-cell current-recording experiments, using HEK-293 cells expressing glutamate receptors and visible light for photolysis, DECM-caged glutamate and its photolytic byproducts were found to be biologically inert. Neurotransmitter receptors that are activated by various carboxyl-group-containing compounds play a central role in signal transmission between approximately 10(12) neurons of the nervous system. Caged neurotransmitters have become an essential tool in transient kinetic investigations of the mechanism of action of neurotransmitter receptors. Previously uncaging the compounds suitable for transient kinetic investigations required ultraviolet light and expensive lasers, and, therefore, special precautions. The availability of caged neurotransmitters suitable for transient kinetic investigations that can be photolyzed by visible light allows the use of simple-to-use, readily available inexpensive light sources, thereby opening up this important field to an increasing number of investigators.  相似文献   

18.
The binding of L-[3H]glutamate to an isolated membrane preparation from crayfish tail muscle has been studied. The muscle homogenate was osmotically shocked, frozen and thawed, and thoroughly washed before incubation with L-[3H]glutamate. The preparation showed high specific binding of L-glutamate with a KD of 0.12 microM and Bmax of 4.7 pmol/mg protein measured in Tris/HCl pH 7.3 and at 4 degrees C. Nonspecific binding was 5-10% of total binding. The glutamate binding was highly stereospecific [K0.5 (D-glutamate), 270 microM] and showed a high degree of discrimination between L-glutamate and L-aspartate [K0.5 (L-aspartate), 54 microM]. In mammalian CNS preparations potent agonists of L-glutamate such as kainate and N-methyl-D-aspartate had no effect at 1 mM, and quisqualate was a weak inhibitor of L-glutamate binding [K0.5 (quisqualate), 162 microM]. Ibotenate was the most potent inhibitor [K0.5 (ibotenate), 0.27 microM], and various esters of L-glutamate were of intermediate potency as displacers of L-[3H]glutamate binding (K0.5 values from 6 to 60 microM). The glutamate binding site from crayfish muscle is clearly different from any of the subclasses of glutamate receptors in mammalian CNS. A possible physiological function of the binding site is a postsynaptic receptor for glutamate, either an extra-junctional or a junctional receptor.  相似文献   

19.
Membrane preparation from the optic lobe of the giant freshwater prawn, Macrobrachium rosenbergii de Man, was examined for the presence of specific L-(3H) glutamate binding. The optic lobes were isolated from live animals. The tissue was homogenized and the membrane fraction isolated by differential centrifugation. The membrane suspension was incubated with 10-1,000 nM of L-(3H) glutamate at 37 degrees C for 60 min. Nonspecific binding was determined by incubating the mixture with 100 microM L-glutamate. L-(3H) glutamate specifically bound to the membrane fraction with a dissociation equilibrium constant (Kd) of 205 nM and maximum number of binding sites (Bmax) of 2.04 n mol/mg protein. By using LIGAND computerized program, the saturation isotherm binding pattern indicates a single type of binding. To determine the type of glutamate receptors, competitive inhibition and IC50 of several glutamate agonists and antagonists were determined. The study reveals a metabotropic type of binding site.  相似文献   

20.
Escherichia coli DNA photolyase (photoreactivating enzyme) is a flavoprotein. The enzyme binds to DNA containing pyrimidine dimers in a light-independent step and, upon illumination with 300-600 nm radiation, catalyzes the photosensitized cleavage of the cyclobutane ring thus restoring the integrity of the DNA. We have studied the binding reaction using the techniques of nitrocellulose filter binding and flash photolysis. The enzyme binds to dimer-containing DNA with an association rate constant k1 estimated by two different methods to be 1.4 X 10(6) to 4.2 X 10(6) M-1 S-1. The dissociation of the enzyme from dimer-containing DNA displays biphasic kinetics; for the rapidly dissociating class of complexes k2 = 2-3 X 10(-2) S-1, while for the more slowly dissociating class k2 = 1.3 X 10(-3) to 6 X 10(-4) S-1. The equilibrium association constant KA, as determined by the nitrocellulose filter binding assay and the flash photolysis assay, was 4.7 X 10(7) to 6 X 10(7) M-1, in reasonable agreement with the values predicted from k1 and k2. From the dependence of the association constant on ionic strength we conclude that the enzyme contacts no more than two phosphodiester bonds upon binding; this strongly suggests that the pyrimidine dimer is the main structural determinant of specific photolyase-DNA interaction and that nonspecific ionic interactions do not contribute significantly to substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号