首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aromatase system associated with the mitochondrial fraction of human term placenta, present at 35–50% the specific activity of the microsomal enzyme, is substantially the same as the microsomal enzyme as determined by the following: 1) The rate of aromatization of androstenedione, 19-nortestosterone, and 16α-hydroxytestosterone in mitochondria was a nearly constant proportion of the microsomal rate; 2) Sensitivity to carbon monoxide was the same; 3) The magnitude of cytochrome P-450 Type I spectral interactions with androgen substrates was a constant proportion in mitochondria and microsomes; 4) Sensitivity to an antibody raised against hepatic microsomal NADPH-cytochrome c reductase was the same. When inner and outer mitochondrial membrane subfractions were prepared, the predominant aromatase activity was associated with the outer membrane preparation. This aromatase activity could not be accounted for by microsomal contamination as determined by inosine diphosphatase activity, a microsomal marker. After correction, the rate of aromatization in the outer membrane preparation was almost six times that in the inner membranes and three times that of the whole mitochondrial fraction  相似文献   

2.
The ability of equine and human placental microsomes to aromatize testosterone and 19-nortestosterone was studied. When 3 microM [1 beta,2 beta-3H]testosterone was used as substrate, the specific activity of equine placental microsomal aromatase was 2.5 times higher than that of the human microsomal enzyme. Although 19-nortestosterone was aromatized 67 times more rapidly by equine than by human aromatase, we found that equine aromatase exhibited a markedly weaker affinity for this substrate than did the human enzyme. Competitive inhibition of testosterone aromatization by 19-nortestosterone occurred with both equine and human aromatases. While having no effect on mare placental microsomes, Na+ and K+ (500 mM) stimulated testosterone aromatization by human placental microsomes by 73 and 52% respectively. If indeed a single enzyme is responsible for the aromatization of testosterone and 19-nortestosterone, which seems to be the case in both equine and human placental aromatase, our results show that differences in the structure of the active sites exist between equine and human aromatases.  相似文献   

3.
1. Glutamate dehydrogenase and malate dehydrogenase solubilized from liver microsomes were able to rebind to microsomal vesicles while the corresponding dehydrogenases extracted from mitochondria showed no affinity for microsomes. 2. Competition was noticed between microsomal glutamate dehydrogenase and microsomal malate dehydrogenase in the binding to microsomal membranes. Mitochondrial malate dehydrogenase or bovine serum albumin did not inhibit the binding of microsomal glutamate dehydrogenase to microsomes. 3. Binding of microsomal glutamate dehydrogenase to microsomal membranes decreased when microsomes was preincubated with trypsin. 4. Rough microsomal glutamate dehydrogenase was more efficiently bound to rough microsomes than smooth microsomes. Conversely, smooth microsomal glutamate dehydrogenase had higher affinity for smooth microsomes than for rough microsomes. 5. A difference was noticed among the glutamate dehydrogenase isolated from rough and smooth microsomes, and from mitochondria, which suggested the possibility of minor post-translational modification of enzyme molecules in the transport from the site of synthesis to mitochondria.  相似文献   

4.
Summary Rainbow trout gonads were subfractionated by differential centrifugation with emphasis on obtaining preparations suitable for the study of steroid-metabolizing enzymes. A fractionation scheme was evaluated for the mature testis and for 3 ovarian developmental stages. The distribution of cell organelles among the fractions was determined using enzyme-markers and electron microscopy. The fractionation scheme was found to be suitable for separating mitochondria and microsomes which were recovered at similar yields to those that had been reported for other extraheptic fish tissues. Fractionation of the mature ovary was fraught with problems probably because a large yolk protein cytosole fraction interfered with the recovery of microsomes. However, no difference in the specific activity of microsomal NADPH-cytochrome c-reductase between the various organ preparations was evident. The testis microsomes contained detectable amounts of cytochrome P450, whereas its content in the various ovary microsomes was too low to be detected. Progesterone 17-hydroxylase was detected in microsomes from testes and early developing ovaries, and microsomal aromatase activity was present in microsomes from early developing, mature and postovulatory ovaries. Furthermore, the testis microsomes contained a highly active UDP glucuronosyltransferase with testosterone used as a substrate.  相似文献   

5.
GTP-binding proteins (GTPases) have been detected in the mitochondria of human placenta. It has been proposed that porin interacts with GTPases in the mitochondrion to modulate contact site function, however, their identity and location is not known. In this study, we investigated the location of GTPases in mitochondria from term placentae as well as the expression of mitochondrial GTPases in mid-term placentae. Mitochondria obtained from human term and mid-term placentae were purified by sedimentation. Sub-mitochondrial vesicles prepared from ruptured and sonicated mitochondria were separated by ultracentrifugation in sucrose density gradients. The location of membrane vesicles was determined using marker enzymes. Mitochondrial proteins were separated by SDS-PAGE. Western blots were incubated in [alpha-(32)P]-GTP and detected using autoradiography or antibodies against known GTPases and porin followed by enhanced chemiluminescence. [alpha-(32)P]-GTP bound 24 and 28 kDa proteins located in the outer membrane. The G(salpha)antibody detected 42.5, 53 and 67 kDa proteins. The G(ialpha)antibody identified a 40.5 kDa band in contact sites and the outer membrane, as well as 55 and 105 kDa proteins in contact site vesicles. The Ran antibody detected a 28 kDa protein, mainly in the outer membrane. Porin migrated at 30 kDa. G(ialpha)and Ran were detected in mitochondria from both term and mid-term placentae. The location of porin and GTPases leave open the possibility that these proteins interact in contact sites and may also be responding to extra-mitochondrial signals. Ran and G(ialpha)are expressed by mid-term in human placentae and may be necessary for placental functions at this stage of development. It will be important in future experiments to characterise the physiological functions of these GTP-binding proteins in the mitochondria of human placenta.  相似文献   

6.
At Case Western Reserve University in Cleveland, the known intermediate steps in the aromatization, catalyxed by human placental microsomes, of 4-androstene-3, 17-dione to estrone were evaluated. Oxygen and carbon monoxide atmospheres were used to expose the properties of the participating oxidases. The results were judged to be evidence for the existence of 3 mixed function oxidases active in steroid aromatization. One of the oxidases may be a form of cytochrome P-450. The proposed microsomal components must be physically fractionated for validation of their independent existences.  相似文献   

7.
In mouse ovaries, the enzyme 3 beta-hydroxysteroid dehydrogenase (HSD) is distributed between microsomes and mitochondria. Throughout the follicular phase of the estrous cycle, the HSD activity in microsomes is predominant; whereas, after LH stimulation, HSD activity during the luteal phase is highest in the mitochondria. The current study examined whether or not LH stimulation always results in an increase in mitochondrial HSD activity. This was accomplished by measuring the HSD activity in microsomal and mitochondrial fractions from ovaries of pregnant mice. These animals have two peaks of LH during gestation, and one peak of LH after parturition. It was found that mitochondrial HSD activity was highest after each peak of LH. It is proposed that mitochondrial HSD is essential for the synthesis of high levels of progesterone. The increase in HSD activity in mitochondria after LH stimulation occurs because: 1) LH initiates the simultaneous synthesis of HSD and the cholesterol side-chain cleavage enzyme (P450scc); and, 2) HSD and P450scc bind together to form a complex, which becomes inserted into the inner membrane of the mitochondria. High levels of progesterone are synthesized by mitochondrial HSD because: 1) the requisite NAD+ cofactor for progesterone synthesis is provided directly by the mitochondria, rather than indirectly via the rate limiting malate-aspartate shuttle; and, 2) the end-product inhibition of P450scc by pregnenolone is eliminated because pregnenolone is converted to progesterone.  相似文献   

8.
Phospholipids in mitochondria can be exchanged with those in two microsomal fractions from rough endoplasmic reticulum (rough microsomes) and smooth endoplasmic reticulum (smooth microsomes) in vitro in the presence of cell supernatant. The amounts of phospholipids transferred from each submicrosomal fraction to nitochondria were slightly different. The compositions of the phospholipids transferred to mitochondria from both microsomal fractions were the same, though these two fractions actually had different phospholipid compositions.  相似文献   

9.
The pretreatment of rat liver mitochondrial fractions with phospholipase C preparations enhanced the incorporation of cytidine diphospho-[14C]-choline into phospholipids several-fold. Similar pretreatment of the microsomal fraction produced a similar stimulation. When the extent of microsomal contamination in the mitochondria was determined, and increments of pretreated microsomes were added to the mitochondria, the incorporation values extrapolated to zero for zero microsomal contamination. It was concluded that lecithin biosynthesis from endogenous diglycerides in the mitochondrial fractions could be ascribed to contaminating microsomes.  相似文献   

10.
In vitro inhibition of rat liver mitochondrial and microsomal aldehyde dehydrogenase (ALDH) under conditions of active CCl4 metabolism was investigated. Incubation of microsomes or mitochondria in the presence of NADPH alone caused significant, time-dependent inhibition of mitochondrial and microsomal ALDH. EDTA partially protected ALDH from inhibition. Incubation of microsomes or microsomes plus mitochondria in the presence of NADPH and CCl4 resulted in marked inhibition of microsomal and mitochondrial ALDH activity. The inhibition was both dose- and time-dependent and was relatively less in the presence of EDTA. It is proposed that the inhibition of membrane-bound ALDH may be one of the early events responsible for the genesis of CCl4-hepatotoxicity.  相似文献   

11.
An antibody to a UDP-glucuronosyltransferase (UDPGT) isoenzyme which catalyzes the glucuronidation of p-nitrophenol (PNP) in rabbit liver was raised in sheep and used to identify immunologically similar UDPGTs in rabbit and human livers. Immunoblotting experiments showed that the antisera specifically recognized PNP UDPGT but not estrone UDPGT purified from rabbit liver. Sheep anti-rabbit liver PNP UDPGT IgG immunoprecipitated PNP, 1-naphthol, and 4-methylumbelliferone glucuronidation activities in rabbit and human liver microsomal preparations. In rabbit liver microsomes the antibody did not immunoprecipitate estrone or estradiol glucuronidation activities. In human liver microsomes, 4-aminobiphenyl but not estriol glucuronidation activities were immunoprecipitated, suggesting that the antibody recognizes a specific UDPGT (pI 6.2) in human liver microsomes.  相似文献   

12.
[19C3H]Androstenedione of high specific activity has been prepared. In liver incubation the isotope was shown to be stable to biological processes other than 19-hydroxylation. Incubation of the new substrate with human placental microsomes yielded 3H2O, 3HCOOH and estrogens devoid of radioactivity. The formation of 3H2O and 3HCOOH was close to the expected 2:1 ratio indicating that the material can be used to discriminate between 19-hydroxylation which yields 3H2O and aromatization which results in 3HCOOH. Comparison of the formation of 3H2O from [1 beta, 2 beta 3H]androstenedione and of 3HCOOH from [19C3H3]androstenedione in placental microsomal incubation showed that the aromatization of the former was 3.2 times faster indicating an isotope effect of that magnitude for the aromatization of [19C3H] vs [19CH3]androstenediones. The new substrate will be an effective probe and discriminant of both 19-hydroxylation and aromatization of androgens in vivo and in vitro, reactions which have been reported to be dissociated in specific tissues.  相似文献   

13.
The fate of newly synthesized cytochrome b5 was studied in rat hepatocytes. Using an antibody specific for microsomal cytochrome b5, we found newly synthesized microsomal cytochrome b5 in both mitochondria and a mitochondria associated membrane fraction as well as in microsomes. Newly synthesized cytochrome b5 was quickly removed from the site of synthesis on free ribosomes and inserted into membranes at random. No migration of newly synthesized cytochrome b5 between cellular compartments was observed and therefore the assembly of the apoprotein with the heme moiety is apparently not taking place in any particular cellular compartment.  相似文献   

14.
NADH-cytochrome b5 reductases of rat liver microsomes, mitochondria, and heavy and light Golgi fractions (GF3 and GF 1+2) were compared by antibody inhibition and competition experiments, by peptide mapping, and by CNBr fragment analysis. The water-soluble portion of the microsomal enzyme, released by lysosomal digestion and purified by a published procedure, was used to raise antibodies in rabbits. Contaminant antimicrosome antibodies were removed from immune sera by immunoadsorption onto the purified antigen, and the F(ab')2 fragments of the pure antireductase antibody thus obtained were found to inhibit the NADH-cytochrome c reductase activity equally well in the four membrane fractions investigated, with similar dose-response relationships. Moreover, the purified water-soluble fragment of microsomal reductase, which by itself is very inefficient in reducing cytochrome c, competed for antibody binding with the membrane-bound enzymes, and therefore prevented the inhibition of their activity not only in microsomes but also in the other fractions. The reductases isolated from detergent-solubilized microsomes, mitochondria, GF3, and GF1+2 by immunoadsorption had identical mobilities in SDS polyacrylamide gels. The corresponding bands were eluted from gels, fragmented with pepsin or CNBr treatment, and the two families of peptides thus obtained were analyzed by two-dimensional mapping and SDS polyacrylamide gel electrophoresis, respectively. Both analyses failed to reveal differences among reductases of the four fractions. These findings support the hypothesis that NADH-cytochrome b5 reductase in its various subcellular locations is molecularly identical.  相似文献   

15.
The cytochrome P-450-dependent 20-monooxygenation of ecdysone is catalyzed both by mitochondria and microsomes isolated from Musca domestica (L.) larvae; however, about 50% of the activity is associated with mitochondria, and 37% is associated with microsomes. Pretreatment of larvae with ecdysone results in an increase in Vmax and a decrease in Km values in mitochondria but not in microsomes. Phenobarbital, a known cytochrome P-450 inducer, increases the cytochrome P-450 levels in microsomes without affecting the 20-monooxygenase activity, but both the cytochrome P-450 levels and monooxygenase activity are depressed in mitochondria from phenobarbital-pretreated larvae. The ecdysone 20-monooxygenase activity is equally distributed between mitochondria and microsomes in adult insects. Pretreatment of the insects with ecdysone does not significantly modify the 20-monooxygenase activity of either mitochondrial or microsomal fractions, but the cytochrome P-450 levels are reduced in mitochondria. Phenobarbital also depresses the mitochondrial cytochrome P-450 levels while markedly increasing the microsomal cytochrome P-450 levels. However, no significant changes in ecdysone 20-monooxygenase activity are produced by phenobarbital pretreatment. The effects of ecdysone on adult cytochrome P-450 are mostly evidenced in mitochondria isolated from females, whereas in males the changes are not statistically significant. It is concluded that the mitochondrial ecdysone 20-monooxygenase is under regulatory control by ecdysone in the larval stage, which suggests that only the mitochondrial activity has a physiological role during insect development in M. domestica. In adults, both the mitochondrial and microsomal ecdysone 20-monooxygenase activities are not responsive to ecdysone, which, coupled to their high Km values, indicates that the reaction may not be of physiological importance in adult insects and that the mitochondrial cytochrome P-450 species being depressed by ecdysone in females are possibly not involved in ecdysone metabolism.  相似文献   

16.
The in vitro transport into mitochondria of proteins synthesized in the cytoplasm was studied. The system, in which the microsomes synthesize protein in the presence of mitochondria directly during the experiment proved to be the most efficient one. The microsomal fraction significantly stimulated the incorporation of 14C-valine into the isolated mitochondria proteins. The effects of EDTA treatment of the mitochondrial fraction, the dependence of protein synthesis stimulation on the ratio of mitochondria and microsomal proteins and the kinetic pattern of the reaction suggest that the stimulation of the labelled precursor incorporation into mitochondrial proteins is not probably due to the labelled microsomes adsorption on the mitochondria.  相似文献   

17.
Suicide substrates of aromatase were used as chemical probes to determine if free 19-hydroxyandrost-4-ene-3,17-dione (19-OHA) and 19-oxoandrost-4-ene-3,17-dione (19-oxoA) are obligatory intermediates in the aromatization of androst-4-ene-3,17-dione (androstenedione) to oestrone by human placental aromatase. A radiometric-HPLC assay was used to monitor 19-hydroxy, 19-oxo-, and aromatized products formed in incubations of [14C]androstenedione and human placental microsomes. When microsomes were preincubated with the suicide substrates 10 beta-mercapto-estr-4-ene-3,17-dione (10 beta-SHnorA), or 17 beta-hydroxy-10 beta-mercaptoestr-4-ene-3-one (10 beta-SHnorT), it was found that 19-hydroxy-, 19-oxo- and aromatase activities were inhibited in parallel. However, when the suicide substrates 4-hydroxyandrost-4-ene-3,17-dione (4-OHA) and 19-mercaptoandrost-4-ene-3,17-dione (19-SHA) were preincubated with placental microsomes, significantly greater inhibition of formation of oestrogens was observed in comparison to the inhibition of formation of 19-hydroxy- and 19-oxo-metabolites. Furthermore, significantly more time-dependent inhibition of 19-oxoA formation was observed in comparison to inhibition of 19-OHA formation with these same inhibitors. These results suggest that 19-hydroxy- and 19-oxo-androstenediones are not free, obligatory intermediates in the aromatization of androstenedione by human placental aromatase, but rather are products of their own autonomous cytochrome P-450-dependent, microsomal enzymatic activities.  相似文献   

18.
Lamellar inclusion bodies in the type II alveolar epithelial cell are believed to be involved in pulmonary surfactant production. However, it is not clear whether their role is that of synthesis, storage, or secretion. We have examined the phospholipid composition and fatty acid content of rabbit lung wash, lamellar bodies, mitochondria, and microsomes. Phosphatidylcholine and phosphatidylglycerol, the surface-active components of pulmonary surfactant, accounted for over 80% of the total phospholipid in lung wash and lamellar bodies but for only about 50% in mitochondria and microsomes. Phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin accounted for over 40% of the total in mitochondria and microsomes but for only 6% in lung wash and 15% in lamellar bodies. The fatty acid composition of lamellar body phosphatidylcholine was similar to that of lung wash, but different from that of mitochondria and microsomes, in containing palmitic acid as a major component with little stearic acid and few fatty acids of chain length greater than 18 carbon atoms. The biosynthesis of phosphatidylcholine and phosphatidylglycerol was examined in the mitochondrial, microsomal, and lamellar body fractions from rat lung. Cholinephosphotransferase was largely microsomal. The activity in the lamellar body fraction could be attributed to microsomal contamination. The activity of glycerolphosphate phosphatidyltransferase, however, was high in the lamellar body fraction, although it was highest in the mitochondria and was also active in the microsomes. These data suggest that the lamellar bodies are involved both in the storage of the lipid components of surfactant and in the synthesis of at least one of those components, phosphatidylglycerol.  相似文献   

19.
Suitable incubation conditions were developed for reduced pyridine nucleotide protection and regeneration to permit quantitative assessment of the NADPH requirement for steroid aromatization by human placental microsomes. 10 mM dithiothreitol was found to protect NADP(H) from microsomal nucleotide pyrophosphatase and 2 mM nicotinamide mononucleotide was utilized to control nucleotide glycohydrolase activity. Under these assay conditions, the initial rates of aromatization obtained with restricted NADPH levels were critically dependent upon both the amount and the source of exogenous NADPH-regenerating dehydrogenase system. With excess Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase, an apparent Km for NADPH of 0.20 μM was observed for aromatization which is significently below all previous estimates of the NADPH requirement and which is at greatest only one-tenth the Km value for NADPH utilization by NADPH-cytochrome c reductase. These findings suggest a potential regulatory role for both NADPH-generating and NADPH-accepting enzymes in the support of estrogen biosynthesis.  相似文献   

20.
The translocation of: (i) phosphatidylserine (PtdSer) from its site of synthesis on microsomal membranes to its site decarboxylation in mitochondrial membranes and (ii) phosphatidylethanolamine (PtdEtn) from the mitochondria to its site of methylation to phosphatidylcholine on microsomal membranes has been reconstituted in cell-free systems consisting of rat liver mitochondria and microsomes. Two types of systems have been reconstituted. In one, the translocation of newly made PtdSer or PtdEtn was examined by incubation of microsomes and mitochondria with [3-3H]serine. In the other, membranes were prelabeled with radioactive PtdSer or PtdEtn, and the transfer of these two lipids between mitochondria and microsomes was monitored. For the transfer of both PtdSer from microsomes to mitochondria and PtdEtn from mitochondria to microsomes, newly made phospholipids were translocated much more readily than pre-existing phospholipids. The data suggest that with respect to their translocation between these two organelles, the pools of newly synthesized PtdSer and PtdEtn were distinct from the pools of "older" phospholipids pre-existing in the membranes. Transfer of neither phospholipid in vitro depended on the presence of cytosolic proteins (i.e. soluble phospholipid transfer proteins) or on the hydrolysis of ATP, although there was some stimulation of PtdSer transfer by ATP and several other nucleoside mono-, di-, and triphosphates. The data are consistent with a collision-based mechanism in which the endoplasmic reticulum and mitochondria come into contact with one another, thereby effecting the transfer of phospholipids. The proposal that there is contact between the endoplasmic reticulum and mitochondria is supported by the recent isolation of a membrane fraction having many, but not all, of the properties of the endoplasmic reticulum, but which was isolated in association with mitochondria (Vance, J. E. (1990) J. Biol. Chem. 265, 7248-7256).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号