首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Many cell surface proteins are anchored to the membrane via a glycosylphosphatidylinositol (GPI) moiety, which is attached to the C terminus of the proteins. The core of the GPI anchor is conserved in all eukaryotes but is modified by various side chains. We cloned a mouse phosphatidylinositol glycan-class N (Pig-n) gene that encodes a 931amino acid protein expressed in the endoplasmic reticulum, which is homologous to yeast Mcd4p. We disrupted the gene in F9 embryonal carcinoma cells. In the Pig-n knockout cells, the first mannose in the GPI precursors was not modified by phosphoethanolamine. Nevertheless, further biosynthetic steps continued with the addition of the third mannose and the terminal phosphoethanolamine. The surface expression of Thy-1 was only partially affected, indicating that modification of the first mannose by phosphoethanolamine is not essential for attachment of GPI anchors in mammalian cells. An inhibitor of GPI biosynthesis, YW3548/BE49385A, inhibited transfer of phosphoethanolamine to the first mannose in mammalian cells but only slightly affected the surface expression of GPI-anchored proteins. Biosynthesis of GPI in the Pig-n knockout cells was not affected by YW3548/BE49385A, and yeast overexpressing MCD4 was highly resistant to YW3548/BE49385A, suggesting that Pig-n and Mcd4p are targets of this drug.  相似文献   

2.
A number of eukaryotic proteins are anchored to the membrane by glycosylphosphatidylinositol (GPI), of which the core structure is conserved from protozoan to mammalian cells. Here, we used a panel of thymoma mutants, which synthesize Thy-1 but cannot express it on the cell surface, to study the GPI biosynthetic pathway in mammalian cells. These mutants have been assigned into six complementation classes (A, B, C, E, F, H) by the technique of somatic cell hybridization. Using a combination of metabolic labeling and chemical/enzymatic tests, the biosynthetic defects were mapped to four different steps. Class A, C, and H mutants cannot transfer N-acetylglucosamine (GlcNAc) to a phosphatidylinositol acceptor, suggesting that the first step of GPI synthesis is regulated by at least three genes. The Class E mutant does not synthesize dolichol-phosphate-mannose, the donor for the first mannose residue transferred to the GPI core, and thus cannot form any mannose-containing GPI precursors. Class B and F mutants are defective in the addition of the third mannose residue or ethanolamine phosphate, respectively, to the elongating GPI core. Our findings have implications for the biosynthesis and attachment of the mammalian GPI anchor.  相似文献   

3.
Many eucaryotic cell surface proteins are anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI), of which the core region is highly conserved from protozoa to mammalian cells. Previous studies (Lisanti, M. P., Field, M. C., Caras, I. W., Menon, A. K., and Rodiguez-Boulan, E. (1991) EMBO J. 10, 1969-1977) showed that mannosamine blocked the expression of a recombinant GPI-anchored protein in Madin-Darby canine kidney cells and converted this protein to an unpolarized secretory product. In the present study, we examined the effect of mannosamine on the formation of the glycan portion of the GPI anchor precursors. This amino sugar inhibited the incorporation of mannose into the glycan portion, and the inhibition was dose-dependent. Mannosamine was shown to be incorporated into the glycan as mannosamine, probably mostly in the second mannose position and thereby to block the further addition of mannose and other anchor components. The products formed in the presence of this drug were characterized by gel filtration and high resolution TLC both before and after deamination with nitrous acid and dephosphorylation by HF. Galactosamine and trehalosamine were inactive in this system, whereas glucosamine also inhibited mannose incorporation into GPI intermediates.  相似文献   

4.
Yeast mcd4-174 mutants are blocked in glycosylphosphatidylinositol (GPI) anchoring of protein, but the stage at which GPI biosynthesis is interrupted in vivo has not been identified, and Mcd4p has also been implicated in phosphatidylserine and ATP transport. We report that the major GPI that accumulates in mcd4-174 in vivo is Man(2)-GlcN-(acyl-Ins)PI, consistent with proposals that Mcd4p adds phosphoethanolamine to the first mannose of yeast GPI precursors. Mcd4p-dependent modification of GPIs can partially be bypassed in the mcd4-174/gpi11 double mutant and in mcd4Delta; mutants by high-level expression of PIG-B and GPI10, which respectively encode the human and yeast mannosyltransferases that add the third mannose of the GPI precursor. Rescue of mcd4Delta; by GPI10 indicates that Mcd4p-dependent addition of EthN-P to the first mannose of GPIs is not obligatory for transfer of the third mannose by Gpi10p.  相似文献   

5.
A number of mammalian cell surface proteins are anchored by glycoinositol phospholipid (GPI) structures that are preassembled and transferred to them in the endoplasmic reticulum. The GPIs in these proteins contain linear ethanolamine (EthN)-phosphate (P)-6ManManManGlcN core glycan sequences bearing an additional EthN-P attached to the Man residue (Man 1) proximal to GlcN. The biochemical precursors of mammalian GPI anchor structures are incompletely characterized. In this study, putative [3H]Man-labeled GPI precursors were obtained by in vitro GDP-[3H] Man labeling of HeLa cell microsomes and by in vivo [3H]Man labeling of class B and F Thy-1 negative murine lymphoma mutants known to accumulate incomplete GPIs. The high performance liquid chromatography-purified in vitro and accumulated in vivo GPI products were structurally analyzed by nitrous acid deamination, hydrofluoric acid, trifluoroacetic acid hydrolysis, biosynthetic labeling, and exoglycosidase treatment. The data were consistent with a biosynthetic scheme in which Man and EthN-P are added stepwise to the developing glycan. Several additional points were demonstrated: 1) putative mammalian GPI precursors contain incomplete core glycans corresponding to those in previously characterized trypanosome GPI precursors. 2) The proximal EthN-P found in mature mammalian GPI anchor structures is added to Man 1 prior to incorporation of Man 2 and Man 3. 3) Glycans in the incomplete GPIs that accumulate in classes B and F lymphoma mutants consist of Man2- and Man3GlcN in which EthN-P is linked to Man 1. 4) Distal EthN-P linked to the 6-position of Man, characteristic of the complete GPI core, is found both in a subsequent GPI species with the glycan sequence EthN-P-6ManMan(EthN-P----)ManGlcN and in a more polar GPI product.  相似文献   

6.
Many eukaryotic cell surface proteins are bound to the membrane via the glycosylphosphatidylinositol (GPI) anchor that is covalently linked to their carboxy-terminus. The GPI anchor precursor is synthesized in the endoplasmic reticulum (ER) and post-translationally linked to protein. We cloned a human gene termed PIG-B (phosphatidylinositol glycan of complementation class B) that is involved in transferring the third mannose. PIG-B encodes a 554 amino acid, ER transmembrane protein with an amino-terminal portion of approximately 60 amino acids on the cytoplasmic side and a large carboxy-terminal portion of 470 amino acids within the ER lumen. A mutant PIG-B lacking the cytoplasmic portion remains active, indicating that the functional site of PIG-B resides on the lumenal side of the ER membrane. The PIG-B gene was localized to chromosome 15 at q21-q22. This autosomal location would explain why PIG-B is not involved in the defective GPI anchor synthesis in paroxysmal nocturnal hemoglobinuria, which is always caused by a somatic mutation of the X-linked PIG-A gene.  相似文献   

7.
The glycosylphosphatidylinositol (GPI) anchor, potentially capable of generating a number of second messengers, such as diacylglycerol, phosphatidic acid, and inositol phosphate glycan, has been postulated to be involved in signal transduction in various cell types, including T-cells. We have identified a panel of T-cell hybridoma mutants that are defective at various steps of GPI anchor biosynthesis. Since they were derived from a functional T-T hybridoma, we were able to determine the precise role of the GPI anchor in T-cell activation. Two mutants were chosen for this analysis. The first mutant is defective at the first step of GPI anchor biosynthesis, i.e. in the transfer of N-acetylglucosamine to a phosphatidylinositol acceptor. Thus, it cannot form any GPI precursors or GPI-like compounds. Interestingly, this mutant can be activated by antigen, superantigen, and concanavalin A in a manner comparable to the wild-type hybridoma. These data strongly suggest that the GPI anchor, its precursor, or its potential cleavage product, inositol phosphate glycan, is not required for the early phase of T-cell activation. The second mutant is able to synthesize the first two GPI precursors, but is not able to add mannose residues to them due to a deficiency in dolichol-phosphate-mannose (Dol-P-Man) biosynthesis. Unexpectedly, all of the Dol-P-Man mutants are defective in activation by antigen, suprantigen, and concanavalin A despite normal T-cell receptor expression. Here, we show that the activation defect was due to a pleiotropic glycosylation abnormality because Dol-P-Man is required for both GPI anchor and N-linked oligosaccharide biosynthesis. When the yeast Dol-P-Man synthase gene was stably transfected into the mutants, full expression of surface GPI-anchored proteins was restored. However, N-linked glycosylation was either partially or completely corrected in different transfectants. Reconstitution of activation defects correlates well with the status of N-linked glycosylation, but not with the expression of GPI-anchored proteins. These results thus reveal an unexpected role of N-linked glycosylation in T-cell activation.  相似文献   

8.
Yeast and human glycosylphosphatidylinositol (GPI) precursors differ in the extent to which a fourth mannose is present as a side branch of the third core mannose. A fourth mannose addition to GPIs has scarcely been detected in studies of mammalian GPI synthesis but is an essential step in the Saccharomyces cerevisiae pathway. We report that human SMP3 encodes a functional homolog of the yeast Smp3 GPI fourth mannosyl-transferase. Expression of hSMP3 in yeast complements growth and biochemical defects of smp3 mutants and permits in vivo mannosylation of trimannosyl (Man(3))-GPIs. Immunolocalization shows that hSmp3p resides in the endoplasmic reticulum in human cells. Northern analysis of mRNA from human tissues and cell lines indicates that hSMP3 is expressed in most tissues, with the highest levels in brain and colon, but its mRNA is nearly absent from cultured human cell lines. Correspondingly, increasing expression of hSMP3 in cultured HeLa cells causes abundant formation of three putative tetramannosyl (Man(4))-GPIs. Our data indicate that hSmp3p functions as a mannosyltransferase that adds a fourth mannose to certain Man(3)-GPIs during biosynthesis of the human GPI precursor, and suggest it may do so in a tissue-specific manner.  相似文献   

9.
Many eukaryotic proteins are anchored by glycosylphosphatidylinositol (GPI) to the cell surface membrane. The GPI anchor is linked to proteins by an amide bond formed between the carboxyl terminus and phosphoethanolamine attached to the third mannose. Here, we report the roles of two mammalian genes involved in transfer of phosphoethanolamine to the third mannose in GPI. We cloned a mouse gene termed Pig-o that encodes a 1101-amino acid PIG-O protein bearing regions conserved in various phosphodiesterases. Pig-o knockout F9 embryonal carcinoma cells expressed very little GPI-anchored proteins and accumulated the same major GPI intermediate as the mouse class F mutant cell, which is defective in transferring phosphoethanolamine to the third mannose due to mutant Pig-f gene. PIG-O and PIG-F proteins associate with each other, and the stability of PIG-O was dependent upon PIG-F. However, the class F cell is completely deficient in the surface expression of GPI-anchored proteins. A minor GPI intermediate seen in Pig-o knockout but not class F cells had more than three mannoses with phosphoethanolamines on the first and third mannoses, suggesting that this GPI may account for the low expression of GPI-anchored proteins. Therefore, mammalian cells have redundant activities in transferring phosphoethanolamine to the third mannose, both of which require PIG-F.  相似文献   

10.
Kim YU  Hong Y 《Molecules and cells》2007,24(2):294-300
The mammalian glycosylphosphatidylinositol (GPI) anchor consists of three mannoses attached to acylated GlcN-(acyl)PI to form Man(3)-GlcN-(acyl)PI. The first of the three mannose groups is attached to an intermediate to generate Man-GlcN-(acyl)PI by the first mannosyltransferase (GPI-MT-I). Mammalian and protozoan GPI-MT-I have different substrate specificities. PIG-M encodes the mammalial GPI-MT-I which has 423 amino acids and multiple transmembrane domains. In this work we cloned PIG-M homologues from humans, Plasmodium falciparum (PfPIG-M), and Saccharomyces cerevisiae (GPI14), to test whether they could complement GPI-MT-I-deficient mammalian cells, since this biosynthetic step is likely to be a good target for selective screening of inhibitors against many pathogenic organisms. PfPIG-M partially restored cell surface expression of the GPI-anchored protein CD59 in PIG-M deficient mammalian cells, and first mannose transfer activity in vitro; however, this was not the case for GPI14.  相似文献   

11.
Glycosyl phosphatidylinositol (GPI) anchoring, N glycosylation, and O mannosylation of protein occur in the rough endoplasmic reticulum and involve transfer of precursor structures that contain mannose. Direct genetic evidence is presented that dolichol phosphate mannose (Dol-P-Man) synthase, which transfers mannose from GDPMan to the polyisoprenoid dolichol phosphate, is required in vivo for all three biosynthetic pathways leading to these covalent modifications of protein in yeast cells. Temperature-sensitive yeast mutants were isolated after in vitro mutagenesis of the yeast DPM1 gene. At the nonpermissive temperature of 37 degrees C, the dpm1 mutants were blocked in [2-3H]myo-inositol incorporation into protein and accumulated a lipid that could be radiolabeled with both [2-3H]myo-inositol and [2-3H]glucosamine and met existing criteria for an intermediate in GPI anchor biosynthesis. The likeliest explanation for these results is that Dol-P-Man donates the mannose residues needed for completion of the GPI anchor precursor lipid before it can be transferred to protein. Dol-P-Man synthase is also required in vivo for N glycosylation of protein, because (i) dpm1 cells were unable to make the full-length precursor Dol-PP-GlcNAc2Man9Glc3 and instead accumulated the intermediate Dol-PP-GlcNAc2Man5 in their pool of lipid-linked precursor oligosaccharides and (ii) truncated, endoglycosidase H-resistant oligosaccharides were transferred to the N-glycosylated protein invertase after a shift to 37 degrees C. Dol-P-Man synthase is also required in vivo for O mannosylation of protein, because chitinase, normally a 150-kDa O-mannosylated protein, showed a molecular size of 60 kDa, the size predicted for the unglycosylated protein, after shift of the dpm1 mutant to the nonpermissive temperature.  相似文献   

12.
Misfolding of the mammalian prion protein (PrP) is implicated in the pathogenesis of prion diseases. We analyzed wild type PrP in comparison with different PrP mutants and identified determinants of the in vivo folding pathway of PrP. The complete N terminus of PrP including the putative transmembrane domain and the first beta-strand could be deleted without interfering with PrP maturation. Helix 1, however, turned out to be a major determinant of PrP folding. Disruption of helix 1 prevented attachment of the glycosylphosphatidylinositol (GPI) anchor and the formation of complex N-linked glycans; instead, a high mannose PrP glycoform was secreted into the cell culture supernatant. In the absence of a C-terminal membrane anchor, however, helix 1 induced the formation of unglycosylated and partially protease-resistant PrP aggregates. Moreover, we could show that the C-terminal GPI anchor signal sequence, independent of its role in GPI anchor attachment, mediates core glycosylation of nascent PrP. Interestingly, conversion of high mannose glycans to complex type glycans only occurred when PrP was membrane-anchored. Our study indicates a bipartite function of helix 1 in the maturation and aggregation of PrP and emphasizes a critical role of a membrane anchor in the formation of complex glycosylated PrP.  相似文献   

13.
The African trypanosome, Trypanosoma brucei, expresses two abundant stage-specific glycosylphosphatidylinositol (GPI)-anchored glycoproteins, the procyclic acidic repetitive protein (PARP or procyclin) in the procyclic form, and the variant surface glycoprotein (VSG) in the mammalian bloodstream form. The GPI anchor of VSG can be readily cleaved by phosphatidylinositol (PI)-specific phospholipase C (PI-PLC), whereas that of PARP cannot, due to the presence of a fatty acid esterified to the inositol. In the bloodstream form trypanosome, a number of GPIs which are structurally related to the VSG GPI anchor have been identified. In addition, several structurally homologous GPIs have been described, both in vivo and in vitro, that contain acyl-inositol. In vivo the procyclic stage trypanosome synthesizes a GPI that is structurally homologous to the PARP GPI anchor, i.e. contains acyl-inositol. No PI-PLC-sensitive GPIs have been detected in the procyclic form. Using a membrane preparation from procyclic trypanosomes which is capable of synthesizing GPI lipids upon the addition of nucleotide sugars we find that intermediate glycolipids are predominantly of the acyl-inositol type, and the mature ethanolamine-phosphate-containing precursors are exclusively acylated. We suggest that the differences between the bloodstream and procyclic form GPI biosynthetic intermediates can be accounted for by the developmental regulation of an inositol acylhydrolase, which is active only in the bloodstream form, and a glyceride fatty acid remodeling system, which is only partially functional in the procyclic form.  相似文献   

14.
The cell surface of the parasitic protozoan Leishmania mexicana is coated by glycosylphosphatidylinositol (GPI)-anchored glycoproteins, a GPI-anchored lipophosphoglycan and a class of free GPI glycolipids. To investigate whether the anchor or free GPIs are required for parasite growth we cloned the L.mexicana gene for dolichol-phosphate-mannose synthase (DPMS) and attempted to create DPMS knockout mutants by targeted gene deletion. DPMS catalyzes the formation of dolichol-phosphate mannose, the sugar donor for all mannose additions in the biosynthesis of both the anchor and free GPIs, except for a alpha1-3-linked mannose residue that is added exclusively to the free GPIs and lipophosphoglycan anchor precursors. The requirement for dolichol-phosphate-mannose in other glycosylation pathways in L.mexicana is minimal. Deletion of both alleles of the DPMS gene (lmdpms) consistently resulted in amplification of the lmdpms chromosomal locus unless the promastigotes were first transfected with an episomal copy of lmdpms, indicating that lmdpms, and possibly GPI biosynthesis, is essential for parasite growth. As evidence presented in this and previous studies indicates that neither GPI-anchored glycoproteins nor lipophosphoglycan are required for growth of cultured parasites, it is possible that the abundant and functionally uncharacterized free GPIs are essential membrane components.  相似文献   

15.
MCD4 and GPI7 are important for the addition of glycosylphosphatidylinositol (GPI) anchors to proteins in the yeast Saccharomyces cerevisiae. Mutations in these genes lead to a reduction of GPI anchoring and cell wall fragility. Gpi7 mutants accumulate a GPI lipid intermediate of the structure Manalpha1-2[NH(2)-(CH(2))(2)-PO(4)-->]Manalpha1-2Manalpha 1-6[NH(2)-(C H(2))(2)-PO(4)-->]Manalpha1-4GlcNalpha1-6[acyl-->]inositol-P O(4)-lipi d, which, in comparison with the complete GPI precursor lipid CP2, lacks an HF-sensitive side chain on the alpha1-6-linked mannose. In contrast, mcd4-174 accumulates only minor amounts of abnormal GPI intermediates. Here we investigate whether YLL031c, an open reading frame predicting a further homologue of GPI7 and MCD4, plays any role in GPI anchoring. YLL031c is an essential gene. Its depletion results in a reduction of GPI anchor addition to GPI proteins as well as to cell wall fragility. YLL031c-depleted cells accumulate GPI intermediates with the structures Manalpha1-2Manalpha1-2Manalpha1-6[NH(2)-(CH(2))(2)-PO( 4)-->]Manalpha1 -4GlcNalpha1-6[acyl-->]inositol-PO(4)-lipid and Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4G lcNalpha1-6[acyl-->]inos itol-PO(4)-lipid. Subcellular localization studies of a tagged version of YLL031c suggest that this protein is mainly in the ER, in contrast to Gpi7p, which is found at the cell surface. The data are compatible with the idea that YLL031c transfers the ethanolaminephosphate to the inner alpha1-2-linked mannose, i.e. the group that links the GPI lipid anchor to proteins, whereas Mcd4p and Gpi7p transfer ethanolaminephosphate onto the alpha1-4- and alpha1-6-linked mannoses of the GPI anchor, respectively.  相似文献   

16.
Glycosylphosphatidylinositol (GPI) is a post-translational modification that anchors cell surface proteins to the plasma membrane, and GPI modifications occur in all eukaryotes. Biosynthesis of GPI starts on the cytoplasmic face of the endoplasmic reticulum (ER) membrane, and GPI precursors flip from the cytoplasmic side to the luminal side of the ER, where biosynthesis of GPI precursors is completed. Gwt1p and PIG-W are inositol acyltransferases that transfer fatty acyl chains to the inositol moiety of GPI precursors in yeast and mammalian cells, respectively. To ascertain whether flipping across the ER membrane occurs before or after inositol acylation of GPI precursors, we identified essential residues of PIG-W and Gwt1p and determined the membrane topology of Gwt1p. Guided by algorithm-based predictions of membrane topology, we experimentally identified 13 transmembrane domains in Gwt1p. We found that Gwt1p, PIG-W, and their orthologs shared four conserved regions and that these four regions in Gwt1p faced the luminal side of the ER membrane. Moreover, essential residues of Gwt1p and PIG-W faced the ER lumen or were near the luminal edge of transmembrane domains. The membrane topology of Gwt1p suggested that inositol acylation occurred on the luminal side of the ER membrane. Rather than stimulate flipping of the GPI precursor across the ER membrane, inositol acylation of GPI precursors may anchor the precursors to the luminal side of the ER membrane, preventing flip-flops.  相似文献   

17.
Four major glycolipids were extracted from Toxoplasma gondii tachyzoites which were metabolically labeled with tritiated glucosamine, mannose, palmitic and myristic acid, ethanolamine, and inositol. Judging from their sensitivity to a set of enzymatic and chemical tests, these glycolipids share the following properties with the glycolipid moiety of the glycosylphosphatidylinositol anchor (GPI anchor) of the major surface protein, P30, of T. gondii: 1) a nonacetylated glucosamine-inositol phosphate linkage; 2) sensitivity toward phosphatidylinositol-specific phospholipase C and nitrous acid; 3) identity of HF-dephosphorylated GPI glycan backbone between three glycolipids and the HF-dephosphorylated core glycan of the GPI anchor of the major surface protein P30; 4) the presence of a linear core glycan structure blocked by an ethanolamine phosphate residue(s). Taken together with the nature of radiolabeled precursors incorporated into these glycolipids, the data indicate that these GPIs are involved in the biosynthesis of the GPI-membrane anchors of T. gondii.  相似文献   

18.
Glycosylphosphatidylinositol (GPI) anchoring of proteins to the plasma membrane is a common mechanism utilized by all eukaryotes including mammals, yeast, and the Trypanosoma brucei parasite. We have previously shown that in mammals phenanthroline (PNT) blocks the attachment of phosphoethanolamine (P-EthN) groups to mannose residues in GPI anchor intermediates, thus preventing the synthesis of mammalian GPI anchors. Therefore, PNT is likely to inhibit GPI-phosphoethanolamine transferases (GPI-PETs). Here we report that in yeast, PNT also inhibits the synthesis of the GPI anchor as well as GPI-anchored proteins. Interestingly, the mechanism of PNT inhibition of GPI synthesis is different from that of YW3548, another putative GPI-PET inhibitor. In contrast to mammals and yeast, the synthesis of GPIs in T. brucei is not affected by PNT. Our results indicate that the T. brucei GPI-PET could be a potential target for antiparasitic drugs.  相似文献   

19.
Cells synthesize the GPI anchor carbohydrate core by successively adding N-acetylglucosamine, three mannoses, and phosphoethanolamine (EtN-P) onto phosphatidylinositol, thus forming the complete GPI precursor lipid which is then added to proteins. Previously, we isolated a GPI deficient yeast mutant accumulating a GPI intermediate containing only two mannoses, suggesting that it has difficulty in adding the third, alpha1,2-linked Man of GPI anchors. The mutant thus displays a similar phenotype as the mammalian mutant cell line S1A-b having a mutation in the PIG-B gene. The yeast mutant, herein named gpi10-1 , contains a mutation in YGL142C, a yeast homolog of the human PIG-B. YGL142C predicts a highly hydrophobic integral membrane protein which by sequence is related to ALG9, a yeast gene required for adding Man in alpha1,2 linkage to N-glycans. Whereas gpi10-1 cells grow at a normal rate and make normal amounts of GPI proteins, the microsomes of gpi10-1 are completely unable to add the third Man in an in vitro assay. Further analysis of the GPI intermediate accumulating in gpi10 shows it to have the structure Manalpha1-6(EtN-P-)Manalpha1-4GlcNalpha1- 6(acyl) Inositol-P-lipid. The presence of EtN-P on the alpha1,4-linked Man of GPI anchors is typical of mammalian and a few other organisms but had not been observed in yeast GPI proteins. This additional EtN-P is not only found in the abnormal GPI intermediate of gpi10-1 but is equally present on the complete GPI precursor lipid of wild type cells. Thus, GPI biosynthesis in yeast and mammals proceeds similarly and differs from the pathway described for Trypanosoma brucei in several aspects.   相似文献   

20.
Glycosylphosphatidylinositol (GPI) anchor is a major lipidation in posttranslational modification. GPI anchor precursors are biosynthesized from endogenous phosphatidylinositols (PIs) and attached to proteins in the endoplasmic reticulum. Endogenous PIs are characterized by domination of diacyl species and the presence of polyunsaturated fatty acyl chain, such as 18:0-20:4, at the sn-2 position. In contrast, the features of mammalian glycosylphosphatidylinositol-anchored proteins (GPI-APs) are domination of alkyl/acyl PI species and the presence of saturated fatty acyl chains at the sn-2 position, the latter being consistent with association with lipid rafts. Recent studies showed that saturated fatty acyl chain at sn-2 is introduced by fatty acid remodeling that occurs in GPI-APs. To gain insight into the former feature, we analyzed the molecular species of several different GPI precursors derived from various mammalian mutant cell lines. Here, we show that the PI species profile greatly changed in the precursor glucosamine (GlcN)-acyl-PI and became very similar to that of GPI-APs before fatty acid remodeling. They had alkyl (or alkenyl)/acyl types with unsaturated acyl chain as the major PI species. Therefore, a specific feature of the PI moieties of mature GPI-APs, domination of alkyl (or alkenyl)/acyl type species over diacyl types, is established at the stage of GlcN-acyl-PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号