首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swelling-activated Cl currents (I Cl,swell ) have been characterized in a mouse renal inner medullary collecting duct cell line (mIMCD-K2). Currents activated by exposing the cells to hypotonicity exhibited characteristic outward rectification and time- and voltage-dependent inactivation at positive potentials and showed an anion selectivity of I > Br > Cl > Asp. NPPB (100 μm) inhibited the current in a voltage independent manner, as did exposure to 10 μm tamoxifen and 500 μm niflumic acid (NFA). In contrast, DIDS (100 μm) blocked the current with a characteristic voltage dependency. These characteristics of I Cl,swell in mIMCD-K2 cells are essentially identical to those of heterologously expressed cardiac CLC-3. A defining feature of CLC-3 is that activation of PKC by PDBu inhibits the conductance. In mIMCD-K2 cells preincubation with PDBu (100 nm) prevented the activation of I Cl,swell by hypotonicity. However, PDBu inhibition of I Cl,swell was reversed after PDBu withdrawal, but this was refractory to subsequent PDBu inhibition. Activation of either the cystic fibrosis transmembrane conductance regulator (CFTR) or Ca2+ activated Cl conductance (CaCC), which are coexpressed in mIMCD-K2 cells prior to PDBu treatment, abolished the PDBu inhibition of I Cl,swell . Control of I Cl,swell by PKC therefore depends on the physiological status of the cell. In intact mIMCD-K2 layers in Ussing chambers, forskolin stimulation of an inward short-circuit current (due to transepithelial Cl secretion via apical CFTR) was inhibited by cell swelling upon hypotonic exposure at the basolateral surface. Activation of I Cl,swell is therefore capable of regulating transepithelial Cl secretion and suggests that I Cl,swell is located at the basolateral membrane. PDBu exposure prior to or during hypotonic challenge was ineffective in reversing the swelling-activated inhibition of Cl secretion, but tamoxifen (100 μm) abolished the hypotonic inhibition of forskolin-stimulated short-circuit current (I sc ). RT-PCR analysis confirmed expression of mRNA for members of the CLC family, including both CLC-2 and 3, in the mIMCD-K2 cell line. Received: 24 February 2000/Revised: 26 May 2000  相似文献   

2.
We examined whether metabolites of arachidonic acid (AA) regulate K+ efflux during regulatory volume decrease (RVD) by mudpuppy red blood cells (RBCs). Volume regulation was inhibited by the phospholipase A2 antagonists mepacrine (10 μm) and ONO-RS-082 (10 μm); the inhibitory effect of ONO-RS-082 was reversed by gramicidin (5 μm). Eicosatetraynoic acid (ETYA, 100 μm), a general antagonist of AA metabolism, also blocked RVD. In addition, volume regulation was inhibited by the lipoxygenase pathway antagonist nordihydroguaiaretic acid (NDGA, 10 μm), the 5 lipoxygenase antagonists AA-861 (5 μm) and curcumin (20 μm), and by the 5-lipoxygenase activating protein inhibitor L-655,298 (5 μm). Inhibition by all four of these agents was reversed with gramicidin. In contrast, the 12- and 15-lipoxygenase pathway inhibitor ethyl-3,4-dihydroxy-benzylidene-cyanoacetate (EDBCA, 1 μm) and the cytochrome P-450 monooxygenase pathway blocker ketoconazole (20 μm) had no effect. On the other hand, the cyclooxygenase pathway inhibitor aspirin (100 μm) slightly enhanced RVD. Consistent with these findings, a K+-selective whole cell conductance responsible for K+ efflux during cell swelling was inhibited by ONO-RS-082 (10 μm), NDGA (10 μm), AA-861 (5 μm), curcumin (20 μm), and l-655,298 (5 μm). In contrast, EDBCA (1 μm), ketoconazole (20 μm), and indomethacin (10 μm) did not block this whole cell conductance. These results indicate that a channel mediating K+ loss during RVD is regulated by a 5-lipoxygenase metabolite of arachidonic acid. Received: 12 December 1996/Revised: 28 February 1997  相似文献   

3.
Elevation in intracellular Ca2+ acting via protein kinase C (PKC) is shown to regulate tight junction resistance in T84 cells, a human colon cancer line and a model Cl secretory epithelial cell. The Ca2+ ionophore A23187, which was used to increase the intracellular Ca2+ concentration, caused a decrease in tight junction resistance in a concentration- and time-dependent manner. Dual Na+/mannitol serosal-to-mucosal flux analysis performed across the T84 monolayers treated with 2 μm A23187 revealed that A23187 increased both fluxes and that in the presence of ionophore there was a linear relationship between the Na+ and mannitol fluxes with a slope of 56.4, indicating that the decrease in transepithelial resistance was due to a decrease in tight junction resistance. Whereas there was no effect of 0.1 μm A23187, 1 or 2 μm produced a 55% decrease in baseline resistance in 1 hr and 10 μm decreased resistance more than 80%. The A23187-induced decrease in tight junction resistance was partially reversible by washing 3 times with a Ringer's-HCO3 solution containing 1% BSA. The A23187 effect on resistance was dependent on intracellular Ca2+; loading the T84 cells with the intracellular Ca2+ chelator BAPTA significantly reduced the decrease in tight junction resistance caused by A23187. This intracellular Ca2+ effect was mediated by protein kinase C and not calmodulin. While the protein kinase C antagonist H-7 totally prevented the action of A23187 on tight junction resistance, the Ca2+/calmodulin inhibitor W13 did not have any effect. Sphingosine, another inhibitor of PKC, partially reduced the A23187-induced decline in tight junction resistance. The PKC agonist PMA mimicked the A23187 effect on resistance, although the effect was delayed up to 1 hr after exposure. In addition, however, PMA also caused an earlier increase in resistance, indicating it had an additional effect in addition to mimicking the effect of elevating Ca2+. The effects of a phospholipase inhibitor (mepacrine) and of inhibitors of arachidonic acid metabolism (indomethacin for the cyclooxygenase pathway, NDGA for the lipoxygenase pathway, and SKF 525A for the epoxygenase pathway) on the A23187 action were also examined. None of these agents altered the A23187-induced decrease in resistance. Monolayers exposed to 2 μm A23187 for 1 hr were stained with fluorescein conjugated phalloidin, revealing that neighboring cells did not part one from another and that A23187 did not have a detectable effect on distribution of F-actin in the perijunctional actomyosin ring. The results indicate that elevation in intracellular Ca2+ decreases tight junction resistance in the T84 monolayer, acting through protein kinase C by a mechanism which does not involve visible changes in the perijunctional actomyosin ring. Received: 14 July 1995/Revised: 25 September 1995  相似文献   

4.
We examined the effect of respiratory acidosis on the Na-HCO3 cotransporter activity in primary cultures of the proximal tubule of the rabbit exposed to 10% CO2 for 5 min, 2, 4, 24 and 48 hr. Cells exposed to 10% CO2 showed a significant increase in Na-HCO3 cotransporter activity (expressed as % of control levels, 5 min: 142 ± 6, 2 hr: 144 ± 13, 4 hr: 145 ± 11, 24 hr: 150 ± 15, 48 hr: 162 ± 24). The increase in activity was reversible after 48 hr. The role of protein kinase C (PKC) on the stimulatory effect of respiratory acidosis on the cotransporter was examined in presence of PKC inhibitor calphostin C or in presence of PKC depletion. Both calphostin C and PKC depletion prevented the effect of 10% CO2 for 5 min or 4 hr to increase the activity of the cotransporter. 10% CO2 for 5 min or 4 hr increased total and particulate fraction PKC activity. To examine the role of phosphotyrosine kinase (PTK) on the increase in cotransporter activity we studied the effect of two different inhibitors, 2-hydroxy-5-(2,5-dihydroxylbenzyl) aminobenzoic acid (HAC) and methyl 2,5-dihydroxycinnamate (DHC) which inhibit phosphotyrosine kinase in basolateral membranes. Cells were pretreated either with vehicle or HAC or DHC and then exposed to 10% CO2 for 5 min or 4 hr. In cells treated with vehicle, 10% CO2 significantly increased cotransporter activity as compared to control cells exposed to 5% CO2. This stimulation by 10% CO2 was completely prevented by HAC or DHC at 5 min (5% CO2: 1.8 ± 0.2, 10% CO2: 2.6 ± 0.2, 10% CO2+ HAC: 1.6 ± 0.2, 10% CO2: +DHC: 2.0 ± 0.3 pH unit/min) and also at 4 hr. The protein synthesis inhibitors actinomycin D and cycloheximide appear to prevent the effect of 10% CO2 for 4 hr on the cotransporter. Our results show that early respiratory acidosis stimulates the Na-HCO3 cotransporter through PKC and PTK-dependent mechanisms and the late effect appears to be mediated through protein synthesis. Received: 28 March 1997/Revised: 22 December 1997  相似文献   

5.
We report here that the 12-lipoxygenase metabolite of arachidonic acid, 12-hydroxy-5Z, 8Z, 10E, 14Z, eicosatetraenoic acid (12-HETE), stimulates cAMP production in human fibroblasts among various cultured cell lines tested. Although 12-HETE seemed to stimulate the phospholipase C (PLC)-protein kinase C (PKC) system, inhibitors against PLC and PKC did not reduce the cAMP production induced by 12-HETE, indicating that the activation of PLC-PKC system is not positively coupled with the stimulation of cAMP production. On the other hand, the cAMP production induced by 12-HETE was dependent on the Ca2+/calmodulin system in the cells. The results suggest that 12-HETE specifically stimulates Ca2+/calmodulin-dependent adenylyl cyclase to increase cAMP level in the fibroblasts. J Cell Physiol 178:63–68, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

6.
Previous work from this laboratory has shown that apical membrane sodium channel activity is stimulated by serosal hyposmotic solutions (Wills, Millinoff & Crowe, 1991). In the present study, we determined whether this stimulation of sodium transport is additive with the actions of prostaglandin E2 (PGE2) or cyclic AMP (cAMP). Addition of exogenous PGE2 (100 nm; serosal bath) to isosmotic solutions led to large increases in the amiloride-sensitive short-circuit current (I sc ) and transepithelial conductance (G t ), whereas no significant effects of PGE2 were observed in hyposmotic serosal solutions. Subsequent addition of mucosal amiloride reduced I sc by ∼95% and G t by ∼60%. Inhibition of endogenous PGE2 production by blockers of phospholipase A2 activity (quinacrine or 3[4-octadecyl]-benzoylacrylic acid; OBBA), or inhibition of cyclooxygenase activity by indomethacin reduced the stimulation of I sc and G t by hyposmotic solutions. Addition of forskolin (FSK) or 3-Isobutyl-1-methylxanthine (IBMX) also resulted in approximately twofold increases in the amiloride-sensitive I sc and G t and abolished the effects of subsequent hyposmotic challenge. The effects of forskolin, PGE2, and hyposmotic challenge were diminished by pretreatment with H89, a protein kinase A (PKA) inhibitor. We conclude that osmotic regulation of sodium channel activity interacts with multiple intracellular signaling pathways, specifically the arachidonic acid metabolic pathway and the cAMP/PKA intracellular messenger cascade. Received: 17 March 1997/Revised: 11 June 1997  相似文献   

7.
The voltage-gated potassium channel, Kv1.3, which is highly expressed in a number of immune cells, contains concensus sites for phosphorylation by protein kinase C (PKC). In lymphocytes, this channel is involved in proliferation—through effects on membrane potential, Ca2+ signalling, and interleukin-2 secretion—and in cytotoxic killing and volume regulation. Because PKC activation (as well as increased intracellular Ca2+) is required for T-cell proliferation, we have studied the regulation of Kv1.3 current by PKC in normal (nontransformed) human T lymphocytes. Adding intracellular ATP to support phosphorylation, shifted the voltage dependence of activation by +8 mV and inactivation by +17 mV, resulting in a 230% increase in the window current. Inhibiting ATP production and action with ``death brew' (2-deoxyglucose, adenylylimidodiphosphate, carbonyl cyanide-m-chlorophenyl hydrazone) reduced the K+ conductance (G K ) by 41 ± 2%. PKC activation by 4β-phorbol 12,13-dibutyrate, increased G K by 69 ± 6%, and caused a positive shift in activation (+9 mV) and inactivation (+9 mV), which resulted in a 270% increase in window current. Conversely, several PKC inhibitors reduced the current. Diffusion into the cell of inhibitory pseudosubstrate or substrate peptides reduced G K by 43 ± 5% and 38 ± 8%, respectively. The specific PKC inhibitor, calphostin C, potently inhibited Kv1.3 current in a dose- and light-dependent manner (IC50∼ 250 nm). We conclude that phosphorylation by PKC upregulates Kv1.3 channel activity in human lymphocytes and, as a result of shifts in voltage dependence, this enhancement is especially prevalent at physiologically relevant membrane potentials. This increased Kv1.3 current may help maintain a negative membrane potential and a high driving force for Ca2+ entry in the presence of activating stimuli. Received: 12 July 1996/Revised: 21 October 1996  相似文献   

8.
Ehrlich ascites tumor cells, loaded with 3H-labeled arachidonic acid and 14C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo-osmotic exposure the rate of 3H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of 14C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A2 is activated by cell swelling in the Ehrlich cells. Within the same time frame there is no swelling-induced increase in 14C-labeled stearic acid release nor in the synthesis of phosphatidyl 14C-butanol in the presence of 14C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of 14C-labeled arachidonic acid. Taken together these results exclude involvement of phospholipase A1, C and D in the swelling-induced liberation of arachidonic acid. The swelling-induced release of 3H-labeled arachidonic acid from Ehrlich cells as well as the volume regulatory response are inhibited after preincubation with GDPβS or with AACOCF3, an inhibitor of the 85 kDa, cytosolic phospholipase A2. Based on these results we propose that cell swelling activates a phospholipase A2—perhaps the cytosolic 85 kDa type—by a partly G-protein coupled process, and that this activation is essential for the subsequent volume regulatory response. Received: 23 July 1996/Revised: 17 June 1997  相似文献   

9.
P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+] i , activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier (∼50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+ i , BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+,Cl cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4,5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+,Cl cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism. Received: 29 July 1998/Revised: 19 October  相似文献   

10.
Patch clamp experiments were performed on two human osteosarcoma cell lines (MG-63 and SaOS-2 cells) that show an osteoblasticlike phenotype to identify and characterize the specific K channels present in these cells. In case of MG-63 cells, in the cell-attached patch configuration (CAP) no channel activity was observed in 2 mm Ca Ringer (control condition) at resting potential. In contrast, a maxi-K channel was observed in previously silent CAP upon addition of 50 nm parathyroid hormone (PTH), 5 nm prostaglandin E2 (PGE2) or 0.1 mm dibutyryl cAMP + 1 μm forskolin to the bath solution. However, maxi-K channels were present in excised patches from both stimulated and nonstimulated cells in 50% of total patches tested. A similar K channel was also observed in SaOS-2 cells. Characterization of this maxi-K channel showed that in symmetrical solutions (140 mm K) the channel has a conductance of 246 ± 4.5 pS (n = 7 patches) and, when Na was added to the bath solution, the permeability ratio (PK/PNa) was 10 and 11 for MG-63 and SaOS-2 cells respectively. In excised patches from MG-63 cells, the channel open probability (P o ) is both voltage- (channel opening with depolarization) and Ca-dependent; the presence of Ca shifts the P o vs. voltage curve toward negative membrane potential. Direct modulation of this maxi-K channel via protein kinase A (PKA) is very unlikely since in excised patches the activity of this channel is not sensitive to the addition of 1 mm ATP + 20 U/ml catalytic subunit of PKA. We next evaluated the possibility that PGE2 or PTH stimulated the channel through a rise in intracellular calcium. First, calcium uptake (45Ca++) by MG-63 cells was stimulated in the presence of PTH and PGE2, an effect inhibited by Nitrendipine (10 μm). Second, whereas PGE2 stimulated the calcium-activated maxi-K channel in 2 mm Ca Ringer in 60% of patches studied, in Ca-free Ringer bath solution, PGE2 did not open any channels (n = 10 patches) nor did cAMP + forskolin (n = 3 patches), although K channels were present under the patch upon excision. In addition, in the presence of 2 mm Ca Ringer and 10 μm Nitrendipine in CAP configuration, PGE2 (n = 5 patches) and cAMP + forskolin (n = 2 patches) failed to open K channels present under the patch. As channel activation by phosphorylation with the catalytic subunit of PKA was not observed, and Nitrendipine addition to the bath or the absence of calcium prevented the opening of this channel, it is concluded that activation of this channel by PTH, PGE2 or dibutyryl cAMP + forskolin is due to an increase in intracellular calcium concentration via Ca influx. Received: 17 September 1995/Revised: 7 December 1995  相似文献   

11.
This report presents a study of the effects of the membrane fluidizer, benzyl alcohol, on NHE isoforms 1 and 3. Using transfectants of an NHE-deficient fibroblast, we analyzed each isoform separately. An increase in membrane fluidity resulted in a decrease of ≈50% in the specific activities of both NHE1 and NHE3. Only V max was affected; K Na was unchanged. This effect was specific, as Na+, K+, ATPase activity was slightly stimulated. Inhibition of NHE1 and NHE3 was reversible and de novo protein synthesis was not required to restore NHE activity after washout of fluidizer. Inhibition kinetics of NHE1 by amiloride, 5-(N,N-dimethyl)amiloride (DMA), 5-(N-hexamethyl)amiloride (HMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were largely unchanged. Half-maximal inhibition of NHE3 was also reached at approximately the same concentrations of amiloride and analogues in control and benzyl alcohol treated, suggesting that the amiloride binding site was unaffected. Inhibition of vesicular transport by incubation at 4°C augmented the benzyl alcohol inhibition of NHE activity, suggesting that the fluidizer effect does not solely involve vesicle trafficking. In summary, our data demonstrate that the physical state of membrane lipids (fluidity) influences Na+/H+ exchange and may represent a physiological regulatory mechanism of NHE1 and NHE3 activity. Received: 23 January 1997/Revised: 1 August 1997  相似文献   

12.
Protein kinase C (PKC) is a major regulator of a broad range of cellular functions. Activation of PKC has been reported to stimulate Na+ transport across frog skin epithelium by increasing the apical Na+ permeability. This positive natriferic response has not been observed with other epithelial preparations, and could reflect the specific experimental conditions of different laboratories, or species or organ specificity of the response to PKC. In the present study, measurements were conducted with skins and urinary bladders from the same animals of two different species. The PKC activator TPA uniformly increased the transepithelial Na+ transport (measured as amiloride-sensitive short-circuit current, I SC, across skins from Rana temporaria and Bufo marinus, and inhibited I SC across bladders from the same animals. Inhibitors of PKC (staurosporine, H-7 and chelerythrine) partially blocked the TPA-induced stimulation of I SC across frog skin. The specificity of the PKC response by amphibian skin could have reflected an induction of moulting, similar to that observed with aldosterone. However, light micrographs of paired areas of frog skin revealed no evidence of the putative moulting. Separation of stratum corneum from the underlying stratum granulosum could be detected following application of aldosterone. We conclude that the effect of PKC on epithelial Na+ channels is organ, and not species specific. The stimulation of Na+ permeability in amphibian skin does not arise from sloughing of the stratum corneum. These observations are consistent with the hypothesis that the natriferic action arises from the calcium-independent isozyme of PKC previously detected in frog skin. Received: 19 January 1996/Revised: 10 April 1996  相似文献   

13.
12(S)-hydroxyeicosatetraenoic acid (12[S]-HETE) and 13(S)-hydroxyoctadecadienoic acid (13[S]-HODE), lipoxygenase metabolites of arachidonic acid and linoleic acid, respectively, previously have been suggested to regulate tumor cell adhesion to endothelium during metastasis. Adhesion of rat Walker carcinosarcoma (W256) cells to a rat endothelial cell monolayer was enhanced after treatment with 12(S)-HETE and this 12(S)-HETE enhanced adhesion was blocked by 13(S)-HODE. Protein kinase inhibitors, staurosporine, calphostin C, and 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine, inhibited the 12(S)-HETE enhanced W256 cell adhesion. Depleting W256 cells of protein kinase C (PKC) with phorbol 12-myristate-13-acetate abolished their ability to respond to 12(S)-HETE. Treatment of W256 cells with 12(S)-HETE induced a 100% increase in membrane-associated PKC activity whereas 13(S)-HODE inhibited the effect of 12(S)-HETE on PKC translocation. High-performance liquid chromatographic analysis revealed that in W256 cells 12-HETE and 13-HODE were two of the major lipoxygenase metabilites of arachidonic acid and linoleic acid, respectively. Therefore, these two metabolites may provide an alternative signaling pathway for the regulation of PKC. Further, these findings suggest that the regulation of tumor cell adhesion to endothelium by 12(S)-HETE and 13(S)-HODE may be a PKC-dependent process.  相似文献   

14.
The present study aimed to characterize the role of protein kinase C (PKC) on the dynamics of tight junction (TJ) opening and closing in the frog urinary bladder. The early events of TJ dynamics were evaluated by the fast Ca++ switch assay (FCSA), which consisted in opening the TJs by removing basolateral Ca++ ([Ca++] bl ), and closing them by returning [Ca++] bl to normal values. Changes in TJ permeability can be reliably gauged through changes of transepithelial electrical conductance (G) determined in the absence of apical Na+. The FCSA allows the appraisal of drugs and procedures acting upon the mechanism controlling the TJs. The time courses of TJ opening and closing in an FCSA were shown to follow single exponential time courses. PKC inhibition by H7 (100 μm) caused a reduction of the rate of junction opening in response to removing [Ca++] bl , without affecting junction closing, indicating that PKC is a key element in the control of TJ opening dynamics in this preparation. H7 at 250 μm almost completely inhibits TJ opening in response to basolateral Ca++ withdrawal. Subsequent H7 removal caused a prompt inhibition release characterized by a sharp G increase which, however, once started cannot be stopped by H7 reintroduction, Ca++ being necessary to allow TJ recovery. A step rise of apical Ca++ concentration ([Ca++] ap ) causes a reduction of the rate of TJ opening in a FCSA, an effect that is believed to be mediated by apical Ca++ entering the open TJs. The specific condition of having Ca++ only in the apical solution and the TJs located midway between the Ca++ source (apical solution) and the Ca++-binding sites presumably located at the zonula adhaerens, might configure a situation in which a control feedback loop is set up. A rise of [Ca++] ap during the phase of G increase in an FCSA causes a transient recovery of G followed by a subsequent escape phase where G increases again. Oscillations of G also appear in response to a rise of apical Ca++. Both escape and oscillations result from the properties of the TJ regulatory feedback loop. In conclusion, the present results indicate that PKC plays a key role in TJ opening in response to extracellular Ca++ withdrawal without major effect on the reverse process. In addition, PKC inhibition by H7 not only prevents TJ opening in response to basolateral Ca++ removal but induces a prompt blockade of TJ oscillations induced by apical Ca++, oscillations which reappear again when H7 is removed. Received: 9 May 2000/Revised: 30 August 2000  相似文献   

15.
Carbonic anhydrase (CA) inhibitors lower the rate of aqueous humor (AH) secretion into the eye. Different CA isozymes might play different roles in the response. Here we have studied the effects of carbonic anhydrase inhibitors on cytoplasmic pH (pH i ) regulation, using a dextran-bound CA inhibitor (DBI) to selectively inhibit membrane-associated CA in a cell line derived from rabbit NPE. pH i was measured using the fluorescent dye BCECF and the pH i responses to the cell permeable CA inhibitor acetazolamide (ACTZ) and DBI were compared. ACTZ markedly inhibited the rapid pH i changes elicited by bicarbonate/CO2 removal and readdition but DBI was ineffective in this respect, consistent with the inability of DBI to enter the cell and inhibit cytoplasmic CA isozymes. Added alone, ACTZ and DBI caused a similar reduction (0.2 pH units) of baseline pH i . We considered whether CA-IV might facilitate H+ extrusion via Na-H exchange. The Na-H exchanger inhibitor amiloride (1 mm) reduced pH i 0.52 ± 0.10 pH units. In the presence of DBI, the magnitude of pH i reduction caused by amiloride was significantly (P < 0.05) reduced to 0.26 ± 0.09 pH units. ACTZ similarly reduced the magnitude of the pH i reduction. DBI also reduced by ∼40% the rate of pH i recovery in cells acidified by an ammonium chloride (20 mm) prepulse; a reduction in pH i recovery rate was also caused by ACTZ and amiloride. DBI failed to alter the pH i alkalinization response caused by elevating external potassium concentration, a response insensitive to amiloride but sensitive to ACTZ. These observations are consistent with a reduction in Na-H exchanger activity in the presence of DBI or ACTZ. We suggest that the CA-IV isozyme might catalyze rapid equilibration of H+ and HCO 3 with CO2 in the unstirred layer outside the plasma membrane, preventing local accumulation of H+ which competes with sodium for the same external Na-H exchanger binding site. Inhibition of CA-IV could produce pH i changes that might alter the function of other ion transporters and channels in the NPE. Received: 24 April 1997/Revised: 4 November 1997  相似文献   

16.
Recent evidence suggests that the formation and permeability of tight junctions are actively regulated by second-messenger-generating systems involving G proteins and protein kinase C (PKC). A possible specific target for these regulatory proteins is the tight junction protein ZO-1. An extensive immunocytochemical study was performed in cultured epithelial monolayers of MDCK and Caco-2 cells to identify which isoforms of G proteins and PKC are present at or near the zonula occludens complex. Antibodies against α-subunits of each one of the four major subfamilies were used for the localization of the G proteins. For the PKC localization, antibodies against eight different isoforms were used. In confluent monolayers, Gα12 and PKC ζ, were the only isoforms of these proteins present at the cell borders. In subconfluent monolayers, Gα12 and PKC ζ were found at the plasma membrane only along the areas of lateral cell-cell contact. These isoforms formed a pattern of distribution very similar to the ZO-1 protein. The present findings indicate that Gα12 and PKC ζ may be part of the zonula occludens complex and may locally regulate formation and permeability of tight junctions. Received: 29 July 1995/Revised: 13 October 1995  相似文献   

17.
Previous results demonstrated that the intercellular communication mediated by gap junctions in retinal pigment epithelial (RPE) cells from the healthy Long Evans (LE) rat strain is higher than that from the dystrophic Royal College of Surgeons (RCS) rat strain. We examined connexin (Cx) expression in both cell types. At the mRNA level, a qualitatively similar expression pattern was found whereby Cx26, Cx32, Cx36, Cx43, Cx45 and Cx46 were all expressed. At the protein level, only Cx43 and Cx46 were detected. Expression of both isoforms was higher in LE-RPE as compared to RCS-RPE by a factor of 1.25 and 2 respectively. Phosphorylation of Cx43 was increased upon activation of protein kinase C (PKC) by 1 μM phorbol 12-myristate 13-acetate (PMA). The phosphorylation status was not changed in hyperglycemic conditions, but this treatment strongly decreased total Cx43 levels to about 75 and 40% (in LE-RPE and RCS-RPE cells respectively) of the control level in LE-RPE cells. This decrease could be overcome by PKC downregulation. These results demonstrate that PKC activation and hyperglycemic conditions have different effects on Cx43 and that PKC is involved in the metabolic pathway induced by hyperglycemic conditions. Received: 21 July 2000/Revised: 19 January 2001  相似文献   

18.
19.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

20.
We have previously shown that epithelial Na+ channels in mouse mandibular gland duct cells are controlled by cytosolic Na+ and Cl, acting, respectively, via G o and G i proteins. Since we found no evidence for control of epithelial Na+ channels by extracellular Na+ ([Na+] o ), our findings conflicted with the long-held belief that Na+ channel activators, such as sulfhydryl reagents, like para-chloromercuriphenylsulfonate (PCMPS), and amiloride analogues, like benzimidazolylguanidinium (BIG) and 5-N-dimethylamiloride (DMA), induce their effects by blocking an extracellular channel site which otherwise inhibits channel activity in response to increasing [Na+] o . Instead, we now show that PCMPS acts by rendering epithelial Na+ channels refractory to inhibition by activated G proteins, thereby eliminating the inhibitory effects of cytosolic Na+ and Cl on Na+ channel activity. We also show that BIG, DMA, and amiloride itself, when applied from the cytosolic side of the plasma membrane, block feedback inhibition of Na+ channels by cytosolic Na+, while leaving inhibition by cytosolic Cl unaffected. Since the inhibitory effects of BIG and amiloride are overcome by the inclusion of the activated α-subunit of G o in the pipette solution, we conclude that these agents act by blocking a previously unrecognized intracellular Na+ receptor. Received: 1 October 1997/Revised: 24 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号