首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Recent developments in sexual selection theory suggest that on their own, mate preferences can promote the maintenance of sexual trait diversity. However, how mate preferences constrain the permissiveness of sexual trait diversity in different environmental regimes remains an open question. Here, we examine how a range of mate choice parameters affect the permissiveness of sexual trait polymorphism under several selection regimes. We use the null model of sexual selection and show that environments with strong assortative mating significantly increase the permissiveness of sexual trait polymorphism. We show that for a given change in mate choice parameters, the permissiveness of polymorphism changes more in environments with strong natural selection on sexual traits than in environments with weak selection. Sets of nearly stable polymorphic populations with weak assortative mating are more likely to show accidental divergence in sexual traits than sets of populations with strong assortative mating. The permissiveness of sexual trait polymorphism critically depends upon particular combinations of natural selection and mate choice parameters.  相似文献   

2.
Individuals differ in realized fitness but the genetic/phenotypic traits that underpin such variation are often unknown. Telomere dynamics may be a major source of variation in fitness traits because physiological telomere shortening depends on environmental and genetic factors and may impair individual performance. Here, we showed that, in a population of a socially monogamous, biparental passerine bird, the barn swallow (Hirundo rustica), breeding in northern Italy, telomere length (TL) of both adult males and females positively correlated with seasonal reproductive and fledging success, as expected because long telomeres are supposed to boost performance. Telomere length was correlated with sexually dimorphic coloration in both sexes, showing for the first time in any species that coloration reliably reflects TL and may mediate mutual mate choice, leading to the observed positive assortative mating for TL in the barn swallow. Thus, TL appears to be associated with variation in a major fitness trait and may be an ultimate target of mate choice, as individuals of both sexes can use coloration to adaptively choose high‐quality mates that possess long telomeres.  相似文献   

3.
Mate selection in man: evidence, theory, and outcome   总被引:2,自引:0,他引:2  
E Epstein  R Guttman 《Social biology》1984,31(3-4):243-278
  相似文献   

4.
The mode in which sexual organisms choose mates is a key evolutionary process, as it can have a profound impact on fitness and speciation. One way to study mate choice in the wild is by measuring trait correlation between mates. Positive assortative mating is inferred when individuals of a mating pair display traits that are more similar than those expected under random mating while negative assortative mating is the opposite. A recent review of 1134 trait correlations found that positive estimates of assortative mating were more frequent and larger in magnitude than negative estimates. Here, we describe the scale‐of‐choice effect (SCE), which occurs when mate choice exists at a smaller scale than that of the investigator's sampling, while simultaneously the trait is heterogeneously distributed at the true scale‐of‐choice. We demonstrate the SCE by Monte Carlo simulations and estimate it in two organisms showing positive (Littorina saxatilis) and negative (L. fabalis) assortative mating. Our results show that both positive and negative estimates are biased by the SCE by different magnitudes, typically toward positive values. Therefore, the low frequency of negative assortative mating observed in the literature may be due to the SCE's impact on correlation estimates, which demands new experimental evaluation.  相似文献   

5.
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

6.
Adaptive speciation occurs when frequency-dependent ecological interactions generate conditions of disruptive selection to which lineage splitting is an adaptive response. Under such selective conditions, evolution of assortative mating mechanisms enables the break-up of the ancestral lineage into diverging and reproductively isolated descendent species. Extending previous studies, I investigate models of adaptive speciation due to the evolution of indirect assortative mating that is based on three different mating traits: the degree of assortativity, a female preference trait and a male marker trait. For speciation to occur, linkage disequilibria between different mating traits, e.g. between female preference and male marker traits, as well as between mating traits and the ecological trait, must evolve. This can lead to novel speciation scenarios, e.g. when reproductive isolation is generated by a splitting in the degree of assortativeness, with one of the emerging lineages mating assortatively, and the other one disassortatively. I investigate the effects of variation in various model parameters on the likelihood of speciation, as well as robustness of speciation to introducing costs of assortative mating. Even though in the models presented speciation requires the genetic potential for strong assortment as well as rather restrictive ecological conditions, the results show that adaptive speciation due to the evolution of assortative mating when mate choice is based on separate female preference and male marker traits is a theoretically plausible evolutionary scenario.  相似文献   

7.
Under sexual selection, mate preferences can evolve for traits advertising fitness benefits. Observed mating patterns (mate choice) are often assumed to represent preference, even though they result from the interaction between preference, sampling strategy and environmental factors. Correlating fitness with mate choice instead of preference will therefore lead to confounded conclusions about the role of preference in sexual selection. Here we show that direct fitness benefits underlie mate preferences for genetic characteristics in a unique experiment on wild great tits. In repeated mate preference tests, both sexes preferred mates that had similar heterozygosity levels to themselves, and not those with which they would optimise offspring heterozygosity. In a subsequent field experiment where we cross fostered offspring, foster parents with more similar heterozygosity levels had higher reproductive success, despite the absence of assortative mating patterns. These results support the idea that selection for preference persists despite constraints on mate choice.  相似文献   

8.
The general hypothesis of mate choice based on non-additive genetic traits suggests that individuals would gain important benefits by choosing genetically dissimilar mates (compatible mate hypothesis) and/or more heterozygous mates (heterozygous mate hypothesis). In this study, we test these hypotheses in a socially monogamous bird, the blue tit (Cyanistes caeruleus). We found no evidence for a relatedness-based mating pattern, but heterozygosity was positively correlated between social mates, suggesting that blue tits may base their mating preferences on partner''s heterozygosity. We found evidence that the observed heterozygosity-based assortative mating could be maintained by both direct and indirect benefits. Heterozygosity reflected individual quality in both sexes: egg production and quality increased with female heterozygosity while more heterozygous males showed higher feeding rates during the brood-rearing period. Further, estimated offspring heterozygosity correlated with both paternal and maternal heterozygosity, suggesting that mating with heterozygous individuals can increase offspring genetic quality. Finally, plumage crown coloration was associated with male heterozygosity, and this could explain unanimous mate preferences for highly heterozygous and more ornamented individuals. Overall, this study suggests that non-additive genetic traits may play an important role in the evolution of mating preferences and offers empirical support to the resolution of the lek paradox from the perspective of the heterozygous mate hypothesis.  相似文献   

9.
There is growing interest in the possibility that genetic compatibility may drive mate choice, including gamete choice, particularly from the perspective of understanding why females frequently mate with more than one male. Mate choice for compatibility differs from other forms of choice for genetic benefits (such as 'good genes') because individuals are expected to differ in their mate preferences, changing the evolutionary dynamics of sexual selection. Recent experiments designed to investigate genetic benefits of polyandry suggest that mate choice on the basis of genetic compatibility may be widespread. However, in most systems the mechanisms responsible for variation in compatibility are unknown. We review potential sources of variation in genetic compatibility and whether there is any evidence for mate choice driven by these factors. Selfish genetic elements appear to have the potential to drive mate compatibility mate choice, though as yet there is only one convincing example. There is abundant evidence for assortative mating between populations in hybrid zones, but very few examples where this is clearly a result of selection against mating with genetically less compatible individuals. There are also numerous cases of inbreeding avoidance, but little evidence that mate choice or differential fertilization success driven by genetic compatibility occurs between unrelated individuals. The exceptions to this are a handful of situations where both the alleles causing incompatibility and the alleles involved in mate choice are located in a chromosome region where recombination is suppressed. As yet there are only a few potential sources of genetic compatibility which have clearly been shown to drive mate choice. This may reflect limitations in the potential for the evolution of mate choice for genetic compatibility within populations, although the most promising sources of such incompatibilities have received relatively little research.  相似文献   

10.
In genetic polymorphisms of two alleles, heterozygous individuals may contribute to the next generation on average more or fewer descendants than the homozygotes. Two different evolutionary responses that remove a disadvantageous heterozygote phenotype from the population are the evolution of strictly assortative mate choice, and that of a modifier making one of the two alleles completely dominant. We derive invasion fitness of mutants introducing dominance or assortative mate choice in a randomly mating population with a genetic polymorphism for an ecological trait. Mutations with small effects as well as mutants introducing complete dominance or perfect assorting are considered. Using adaptive dynamics techniques, we are able to calculate the ratio of fitness gradients for the effects of a dominance modifier and a mate choice locus, near evolutionary branching points. With equal resident allele frequencies, selection for mate choice is always stronger. Dominance is more strongly selected than assortative mating when the resident (common) alleles have very unequal frequencies at equilibrium. With female mate choice the difference in frequencies where dominance is more strongly selected is smaller than when mutants of both sexes can choose without costs. A symmetric resource-competition model illustrates the results.  相似文献   

11.
Abstract

This review presents a comprehensive survey of the literature on mate selection and non‐random mating in man. The topics discussed include: (1) genetic aspects of non‐random mating for complex traits; (2) evidence on resemblance between spouses on a large variety of traits such as intelligence, personality, physical characteristics, and sociocultural traits; (3) a critical review of sociological and psychological theories offered to account for assortative mating, and (4) implications of assortative mating for marital satisfaction. It is suggested that the factors leading to choice of marriage partners need to be studied from the point of view of multivariate profiles rather than single traits. Such studies will require sophisticated methodologies of research design and data analysis.  相似文献   

12.
The origin of new species can be influenced by both deterministic and stochastic factors. Mate choice and natural selection may be important deterministic causes of speciation (as opposed to the essentially stochastic factors of geographic isolation and genetic drift). Theoretical models predict that speciation is more likely when mate choice depends on an ecologically important trait that is subject to divergent natural selection, although many authors have considered such mating/ecology pleiotropy, or "magic-traits" to be unlikely. However, phenotypic signals are important in both mate choice and ecological processes such as avoiding predation. In chemically defended species, it may be that the phenotypic characteristics influencing mate choice are the same signals being used to transmit a warning to potential predators, although few studies have demonstrated this in wild populations. We tested for assortative mating between two color morphs of the Strawberry Poison-Dart Frog, Dendrobates pumilio, a group with striking geographic variation in aposematic color patterns. We found that females significantly prefer individuals of their own morph under two different light treatments, indicating strong assortative mating based on multiple coloration cues that are also important ecological signals. This study provides a rare example of one phenotypic trait affecting both ecological viability and nonrandom mating, indicating that mating/ecology pleiotropy is plausible in wild populations, particularly for organisms that are aposematically colored and visually orienting.  相似文献   

13.
When Darwin first proposed the possibility of sexual selection, he identified two mechanisms, male competition for mates and female choice of mates. Extending this classification, we distinguish two forms of mate choice, direct and indirect. This distinction clarifies the relationship between Darwin's two mechanisms and, furthermore, indicates that the potential scope for sexual selection is much wider than thus far realized. Direct mate choice, the focus of most research on sexual selection in recent decades, requires discrimination between attributes of individuals of the opposite sex. Indirect mate choice includes all other behavior or morphology that restricts an individual's set of potential mates. Possibilities for indirect mate choice include advertisement of fertility or copulation, evasive behavior, aggregation or synchronization with other individuals of the same sex, and preferences for mating in particular locations. In each of these cases, indirect mate choice sets the conditions for competition among individuals of the opposite sex and increases the chances of mating with a successful competitor. Like direct mate choice, indirect mate choice produces assortative mating. As a consequence, the genetic correlation between alleles affecting indirect choice and those affecting success in competition for mates can produce self-accelerating evolution of these complementary features of the sexes. The broad possibilities for indirect mate choice indicate that sexual selection has more pervasive influences on the coevolution of male and female characteristics than previously realized.  相似文献   

14.
Heterozygosity as a target of mate choice has received much attention in recent years and there is growing evidence supporting its role in the evolution of mate preferences. In this study we analyse mating patterns in relation to heterozygosity in a lesser kestrel (Falco naumanni) population intensively monitored over six study years (2002–2007). The magnitude of heterozygosity‐based assortative mating varied over time, being particularly patent in the last study years (2006, 2007). We have found evidence that this mating pattern entails both direct and indirect‐genetic benefits. Clutch size increased with female heterozygosity and more heterozygous males raised a higher number of fledglings particularly in those years when the strength of the heterozygosity‐based assortative mating was markedly higher. In the last study year, parent–offspring correlation of heterozygosity was stronger and higher than the expected if individuals would have randomly mated with respect to heterozygosity. Overall, our results offer empirical support to the heterozygous mate hypothesis of sexual selection but suggest that genetic diversity may act as a temporally variable target for mate choice.  相似文献   

15.
Assortative mating in the wild is commonly estimated by correlating between traits in mating pairs (e.g. the size of males and females). Unfortunately, such an approach may suffer from considerable sampling bias when the distribution of different expressions of a trait in the wild is nonrandom (e.g. when segregation of different size classes of individuals occurs in different microhabitats or areas). Consequently, any observed trait correlation in the wild can be an artefact of pooling heterogeneous samples of mating pairs from different microhabitats or areas rather than true nonrandom matings. This bias in estimating trait correlations as a result of sampling scale is termed the scale‐of‐choice effect (SCE). In the present study, we use two intertidal littorinid species from Hong Kong to show how the SCE can bias size‐assortative mating estimates from mating pairs captured in the wild, empirically demonstrating the influence of this effect on measures of positive assortative mating. This finding cautions that studies overlooking the SCE may have misinterpreted the magnitude and the cause of assortative mating, and we provide a new analytical approach for protecting against this potential bias in future studies.  相似文献   

16.
Whether sexual selection alone can drive the evolution of assortative mating in the presence of gene flow is a long-standing question in evolutionary biology. Here, we report a role for pairing dynamics of individuals when mate choice is mutual, which is sufficient for the evolution of assortative mating by sexual selection alone in the presence of gene flow. Through behavioural observation, individual-based simulation and population genetic analysis, we evaluate the pairing dynamics of coral reef fish in the genus Hypoplectrus (Serranidae), and the role these dynamics can play for the evolution of assortative mating. When mate choice is mutual and the stability of mating pairs is critical for reproductive success, the evolution of assortative mating in the presence of gene flow is not only possible, but is also a robust evolutionary outcome.  相似文献   

17.
Gene flow is expected to limit adaptive divergence, but the ecological and behavioural factors that govern gene flow are still poorly understood, particularly at the earliest stages of population divergence. Reduced gene flow through mate choice (sexual isolation) can evolve even under conditions of subtle population divergence if intermediate phenotypes have reduced fitness. We indirectly tested the hypothesis that mate choice has evolved between coexisting littoral and pelagic ecotypes of polyphenic pumpkinseed sunfish (Lepomis gibbosus) that have diverged in morphology and resource use and where intermediate phenotypes have reduced performance. We assessed the ecotype of nesting males and females using stable isotope estimates of diet and a divergent male morphological trait, oral jaw width. We found positive assortative mating between ecotypes in a common spawning habitat along exposed lake shorelines, but contrary to expectations, assortative mating was variably expressed between two sampling years. Although the factors that influence variable assortative mating remain unclear, our results are consistent with mate choice being expressed by ecotypes. Despite being variably expressed, mate choice will reduce gene flow between ecotypes and could contribute to further adaptive divergence depending on its frequency and strength in the population. Our findings add to a growing body of evidence indicating mate choice behaviour can be a plastic trait, an idea that should be more explicitly considered in empirical studies of mate choice as well as conceptual frameworks of mate choice evolution and adaptive divergence.  相似文献   

18.
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC‐based mate choice in wild mammals are under‐represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite‐derived pairwise relatedness, to attempt to distinguish MHC‐specific effects from genomewide effects. We found MHC‐assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within‐group and neighbouring‐group parent pairs, only neighbouring‐group pairs showed MHC‐assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide‐based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC‐assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.  相似文献   

19.
This paper develops methods to partition the phenotypic correlation between mates for a focal trait--the standard measure for assortative mating--into a direct component and additional indirect components. Indirect assortative mating occurs when a nonassorting trait is correlated within individuals to a directly assorting trait. Direct and indirect assortative mating is assessed for flowering phenology in Brassica rapa. The flowering time of pollen recipients (mothers) was strongly correlated (rho=0.67) to that of potential pollen donors (fathers). Similarly, recipients and donors were correlated for duration of their flowering periods (rho=0.32) and stem diameters (rho=0.52). A partitioning of between-mate correlations revealed direct assortative mating for flowering time and period duration. However, assortment for stem diameter is explained solely through its correlation to flowering time. Examination of standard quantitative genetic theory shows that indirect assortative mating inflates genetic variance in a focal trait and the genetic covariance between focal and phenotypically correlated traits.  相似文献   

20.
Positive assortative mating occurs when individuals with similar phenotypes mate more frequently with each other than is expected by chance. In species in which both the males and females are ornamented, assortative pairings could arise from mutual mate choice on the same trait. We test this mechanism of mate choice and assortative pairing in the Diamond Firetail (Stagonopleura guttata), an Australian estrildid finch in which both sexes are ornamented with red bills, red rumps and white flank spots. We have previously shown sex differences in the degree of ornamentation as females have more flank spots than males. These white flank spots are used during sexual display, being fully displayed by courting males and by females when approaching a displaying male. Here, we experimentally test whether mutual mate preference is based on the number of flank spots. There was no evidence for a direct mutual preference for spot number. Given a choice of potential mates with a natural or experimentally manipulated number of flank spots, males preferred females with more spots, while female preference was not solely based on flank spots. Intriguingly, in both wild and captive Diamond Firetails, we found the number of flank spots in pairs was correlated suggesting a basis for positive assortative pairing. Nevertheless, we conclude that assortative pairing in Diamond Firetails is not due to mutual choice of mates based on the number of flank spots. We discuss different selection pathways for this trait in each sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号