首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H Vaudry  J M Conlon 《FEBS letters》1991,284(1):31-33
The biological role of secrotogranin II is unknown but it has been suggested that the protein may function as a precursor of one or more biologically active neuroendocrine peptides. We have isolated a 33 amino acid-residue peptide from the brain of the frog Rana ridibunda that shows strong (82%) homology with human presecretogranin II-(182-204)-peptide. This region of secretogranin II has also been very strongly conserved in the rat and bovine proteins. Analysis of the nucleotide sequence of the mammalian secretogranin II cDNAs indicates that the peptide sequence is flanked by two Lys-Arg dibasic residue processing sites. It is proposed, therefore, that this fragment represents a specific product of the post-translational processing of secretogranin II and, by analogy with peptides derived from chromogranin A, may be important in the regulation of neurosecretion.  相似文献   

2.
G P McGregor  J M Conlon 《Peptides》1990,11(5):907-910
The nucleotide sequence of cDNA encoding the common biosynthetic precursor of substance P, neurokinin A and neuropeptide K (beta-preprotachykinin) predicts that, in the human, the precursor contains a C-terminal flanking peptide of 19 amino acid residues [beta-preprotachykinin(111-129)-peptide]. Using an antiserum raised against synthetic human beta-preprotachykinin(117-126)-peptide in radioimmunoassay, we have demonstrated that an extract of a human neuroendocrine tumor of the adrenal medulla contained approximately equimolar concentrations of C-terminal preprotachykinin immunoreactivity (C-PPT-IR), substance P and neurokinin A. The C-terminal preprotachykinin flanking peptide was purified to homogeneity and its primary structure was determined. The amino acid sequence of the peptide, Ala-Leu-Asn-Ser-Val-Ala-Tyr-Glu-Arg-Ser-Ala-Met-Gln-Asn-Tyr-Glu, indicates identity with beta-preprotachykinin(111-126)-peptide. The data suggest that the C-terminal flanking peptide, like the tachykinins, is packed into secretory storage vesicles but the Arg127-Arg128-Arg129 residues in human beta-preprotachykinin are removed from the peptide by the action of endogenous processing enzyme(s).  相似文献   

3.
The biosynthetic precursors of the mammalian tachykinins, alpha-, beta-and gamma-preprotachykinins, contain a common N-terminal region of 74 amino acids. A polyclonal antiserum was raised against a synthetic peptide representing N-tyrosylated beta-preprotachykinin-(48-56)-peptide as predicted from the nucleotide sequence of cloned DNA complementary to human beta-preprotachykinin mRNA. By using this antiserum in radioimmunoassay, a single immunoreactive peptide was identified in an extract of a human pheochromocytoma that produced substance P and neurokinin A. Partial microsequencing and determination of the amino acid composition of the peptide indicated identity with preprotachykinin-(20-56)-peptide. Thus the data demonstrate that the Ala19-Glu20 bond in preprotachykinin is the site of cleavage of the signal peptide.  相似文献   

4.
Four peptides derived from procalcitonin were isolated in high yield from an extract of a human medullary thyroid carcinoma. The peptides were identified as procalcitonin-(1-57)-peptide, procalcitonin-(60-91)-peptide (calcitonin), procalcitonin-(60-116)-peptide and procalcitonin-(96-116)-peptide (katacalcin). Determination of the amino acid sequence of procalcitonin-(1-57)-peptide has demonstrated that the Ala25-Ala26 bond in preprocalcitonin is the site of cleavage of the signal peptide. Procalcitonin-(60-116)-peptide represents calcitonin extended from its C-terminus by the sequence Gly-Lys-Lys-Arg-katacalcin, and its formation is indicative of an aberrant pathway of procalcitonin processing in the tumour cells.  相似文献   

5.
Recent studies have revealed that the glucagon gene is expressed in the mammalian intestine. Here it codes for "glicentin" (proglucagon 1-69) and a glucagon-like peptide, proglucagon 78-107, recently isolated from porcine intestine. We studied the fate of the remaining COOH-terminal part of proglucagon (proglucagon 111-160) using radioimmunoassays against proglucagon 111-123 and 126-160. Two peptides were isolated from acid ethanol extracts of porcine ileal mucosa and sequenced: one corresponding to proglucagon 126-158 and one probably corresponding to proglucagon 111-158. By comparing human and porcine proglucagon sequences, Ala117 is replaced by Thr, and Ile138, Ala144, Ile152 and Gln153 are replaced by Val, Thr, Leu, and His. By gel filtration and radioimmunoassay of intestinal extracts it was established that a large part of porcine and virtually all of human proglucagon are processed to release proglucagon 111-123 (designated spacer peptide 2), which, like proglucagon 126-158 must be considered a potential hormonal entity. By isocratic high pressure liquid chromatography human spacer peptide 2 was indistinguishable from synthetic proglucagon 111-122 amide, suggesting that this is the structure of the naturally occurring human peptide.  相似文献   

6.
Abstract: γ-Preprotachykinin mRNA is the most abundant tachykinin mRNA in rat tissues, but the pathway of posttranslational processing of its translation product is unknown. An antiserum was raised against the synthetic peptide Asp-Ala-Gly-His-Gly-Gln-lle-Ser-His [neuropeptide γ-(1-9)-peptide, equivalent to γ-preprotachykinin-(72-80)-peptide], that showed <1% reactivity with intact neuropeptide γ and other tachykinins. Neuropeptide γ-(1-9)-peptide was detected by radioimmunoassay in relatively high concentrations in extracts of regions of rat brain and gastrointestinal tract. These concentrations correlated with (r = 0.99), but were significantly (p < 0.05) less than, the concentrations of neurokinin A-like immunoreactivity. The neuropeptide γ-(1-9)-like immunoreactivity in an extract of rat brain was eluted from a reverse-phase HPLC column in a single fraction with the same retention time as synthetic neuropeptide γ-(1 -9)-peptide. The synthetic peptide did not contract or relax isolated rat trachea, superior mesenteric artery, stomach fundus, or ileum, and the peptide did not affect the ability of neuropeptide 7 to contract the rat fundus. It is concluded that, in rat tissues, Lys70-Arg71 in 7-preprotachykinin is a major site of posttranslational processing, but the resulting product, neuropeptide γ-(1-9)-peptide, is neither an agonist nor an antagonist at the neurokinin-2 (NK-2) receptor.  相似文献   

7.
Two monoclonal antibodies, one raised by immunization with mouse myelin basic protein (MBP) and the second raised by immunization with peptide 68-88 of guinea pig MBP, were compared with respect to specificity. The former antibody (15.32) cross-reacted completely with rat, guinea pig, human, and bovine MBP. It also reacted with peptide 43-88 from each MBP. The latter antibody (22.17) was nonreactive with MBP, but cross-reacted with peptide 43-88 from rat, human, guinea pig, and bovine MBP. When tested with small peptides derived from peptide 43-88, antibody 22.17 reacted with an epitope in the C-terminal region. Antibody 15.32 reacted with an epitope in the N-terminal half of the peptide. The data show that 22.17 reacted with a unique epitope associated only with free peptide, whereas 15.32 recognized an epitope common to both peptide 43-88 and MBP.  相似文献   

8.
Iodinated human beta-endorphin was affinity-cross-linked to opioid receptors present in membrane preparations from bovine frontal cortex, bovine striatum, guinea pig whole brain, and rat thalamus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography revealed covalently labeled peptides of 65, 53, 41, and 38 kilodaltons (kDa). The 65- and 38-kDa peptides were present in all four tissues. The 41-kDa peptide was seen only in bovine caudate and guinea pig whole brain while the 53-kDa peptide was absent in rat thalamus. All four labeled peptides were constituents of opioid receptors since their labeling was fully suppressed by the presence of excess opiates, such as bremazocine, during binding. The distribution and levels of the labeled species in the brain tissues examined and, in earlier work, in the neuroblastoma X glioma NG 108-15 cell line suggested that the 65-kDa peptide is a binding component of mu receptors while the 53-kDa peptide is a binding subunit of delta receptors. This result was strongly supported by the finding that the labeling of the 65-kDa peptide is selectively reduced by the presence of the highly mu-selective ligand Tyr-D-Ala-Gly-(N-Me)Phe-Gly-ol (DAMGE) during binding, while while the labeling of the 53-kDa peptide is selectively reduced or eliminated by the highly mu-selective ligand [D-Pen2, D-Pen5]enkephalin (DPDPE). The labeling of the 41- and 38-kDa bands was reduced by either DAMGE or DPDPE. The relationship of these lower molecular weight opioid-binding peptides to mu and delta receptors is not understood. Several possible explanations are presented.  相似文献   

9.
Chromatographic separation of rat brain extracts followed by automatic Edman sequencing of the major individual components resulted in identification of 61 endogenous peptides derived from known functional proteins (hemoglobin, myelin basic protein, cytochrome-c oxidase, etc.) or unknown precursors. The results are compared with the data obtained earlier for bovine brain. Although the sequences of bovine and rat hemoglobin contain about 20% of amino acid substitutions, the families of structurally related peptides are very similar in both extracts. Several other proteins also give rise to identical or closely related peptide fragments in the two mammalian species. The outlined similarity extends almost exclusively to the most abundant peptides present in the extracts. The minor components show less overlap. Four hemoglobin-derived peptides isolated from rat brain were shown to be biologically active in tumor cells. Eleven are identical to bioactive peptides from other species. Ten structurally overlap with bioactive peptides from other sources. The data obtained show similar biosynthetic pathways of pool components in different species, the resultant peptides being aimed at fulfilling related functions.  相似文献   

10.
An antiserum was generated against a synthetic peptide corresponding to amino acids 95-117 of bovine proenkephalin, and a sensitive radioimmunoassay was developed. Comparison of the reactivities of the synthetic peptide, its specific cleavage products, and other synthetic peptides showed that the important immunological determinant was contained within residues 101-109 of bovine proenkephalin (-Gly-Gly-Glu-Val-Leu-Gly-Lys-Arg-Tyr-). Radioimmunoassay of fractions after gel filtration of bovine adrenal medullary chromaffin granule lysate showed three pools of immunoreactivity: pool 1 (Mr 20,000-30,000), pool 2 (Mr 10,000-20,000), and pool 3 (Mr approximately 5,000). Further characterization by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting showed that the antiserum recognized 27-, 20.5-, 16.5-, and 5.6-kilodalton enkephalin-containing proteins. The radioimmunoassay was also used to detect proenkephalin-like material in extracts of rat adrenal and regions of rat brain and spinal cord following gel filtration. Immunoreactivity from the rat adrenal chromatographed predominantly as high molecular weight material (Mr 31,500-43,500), whereas material in regions of rat brain showed a broader molecular weight distribution (Mr 4,000-43,500). This indicated differences in the processing of proenkephalin between rat adrenal and brain tissue. Differences were also seen in the molecular weight profile of immunoreactivity in different brain regions, most noticeable in the case of striatum and hypothalamus, suggesting regional differences in processing. Based on quantitation of higher molecular weight immunoreactive proenkephalin-like material and free Met-enkephalin immunoreactivity in different brain regions, it was apparent that extensive processing of proenkephalin occurs in brain. We concluded that antisera against proenkephalin-(95-117) recognize a wide range of intermediates in the processing of proenkephalin in both bovine adrenal medulla and rat adrenal, brain, and spinal cord, making it a useful tool for further studies concerned with the expression and post-translational processing of proenkephalin.  相似文献   

11.
We have previously reported the existence of a peptide factor in the adrenal medulla which inhibits aldosterone secretion in cultured bovine zona glomerulosa cells. The acid extracts of chromaffin granules from bovine adrenal medulla were purified by a four step high performance liquid chromatography procedure. Two active fractions exhibited sequence homology with bovine atrial natriuretic factor ANF (Ser99-Tyr126) and its polypeptide precursor (Asn1-Tyr126). The occurrence of both precursor and mature forms of ANF within chromaffin granules indicates the endogenous character of ANF in the adrenal medulla and suggests the potential usefulness of cultured adrenal chromaffin cells for investigating the synthesis, maturation and secretion of atrial peptides.  相似文献   

12.
Peptide mapping of multiple forms of cyclic nucleotide phosphodiesterase   总被引:2,自引:0,他引:2  
Purified multiple forms of 3':5'-cyclic-nucleotide phosphodiesterase (EC 3.1.4.17) were analyzed using two-dimensional tryptic pep]tide mapping of radioiodinated peptides. Comparisons of peptide maps of rat liver insulin-sensitive phosphodiesterase (PDE) with rat brain calmodulin-sensitive PDE suggest that some peptides co-migrate (31-43% co-migration). However, except for a single peptide, bovine retinal rod outer segment PDE, peptide maps appear unrelated to the other two forms (7-12% co-migration). In contrast, peptide maps of a 36,000-dalton proteolysis product of calmodulin-sensitive PDE are highly related to the peptide maps of a rat brain calmodulin-sensitive holoenzyme (73% co-migration). These results suggest that the multiple PDE forms are distinct molecular entities.  相似文献   

13.
Rat and guinea pig brain extracts were examined for the occurrence of gastrin-releasing peptide (GRP)-like substances by sequence specific radioimmunoassays interfaced with gel filtration and reversed phase high performance liquid chromatography (RP-HPLC). Tryptic digestion of the immunoreactive peptides followed by RP-HPLC was used to further characterize GRP-related peptides in brain. Using these analytical techniques it was found that guinea pig brain extracts contained a peptide with characteristics identical to authentic GRP (27 amino acid residues long). A carboxyterminal fragment with the characteristics of GRP(18–27) as well as a respective aminoterminal fragment with the characteristics of GRP(1–16) were also present in guinea pig brain extracts. The GRP(18–27) seems to correspond to the bombesin related material that has been described previously in mammalian brain extracts.Rat brain extracts also contained a peptide with the characteristics of GRP(18–27). The corresponding aminoterminal fragment, however, behaved differently on RP-HPLC from authentic GRP(1–16) and it was not recognized by antibodies directed to the aminoterminal tridecapeptide fragment of authentic GRP. Similarly the GRP-like peptide from rat brain did not comigrate on RP-HPLC with authentic GRP and was unreactive to antibodies directed toward the aminoterminus of GRP.  相似文献   

14.
Prosomatostatin (pro-SS) is a peptide of 92 amino acids which contains the extensively studied somatostatin (SS) 1-28 and SS 1-14 at the C terminus. Little is known about the N-terminal part of pro-SS. In previous studies, using a radioimmunoassay against pro-SS 20-36 (sequence deduced from human cDNA sequence) we have identified a peptide with a molecular mass of approximately 8000 daltons in extracts of pancreas and intestinal mucosa. Using a variety of chromatographic procedures we have now isolated this peptide from extracts of pancreas and intestinal mucosa from pigs. The isolated peptides were sequenced on an Applied Biosystems gas phase sequenator and cleaved with the Asp-N endopeptidase for sequencing of C-terminal fragments. The peptides had an amino acid sequence identical to human pro-SS 1-64. In effluent from isolated perfused preparations of porcine small intestine and pancreas we identified upon appropriate stimulation pro-SS 20-36 immunoreactive peptides that by isocratic high pressure liquid chromatography appeared identical to pro-SS 1-64. An identical peptide was identified in pig plasma. Thus, in pancreas and gut pro-SS processing gives rise to the same pro-SS 1-64 molecule in spite of differential processing of the C terminus (SS 1-14 in pancreas and SS 1-28 in gut). The eventual hormonal role of pro-SS 1-64 may now be evaluated.  相似文献   

15.
In this study purified isoforms of rat ovarian regulatory subunit of type II cAMP-dependent protein kinase (R-II) were compared with R-II purified from rat brain. A special neural form of R-II has been previously described in bovine brain. Analysis by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved three isoforms of rat ovarian R-II (R-II54, Mr = 54,000; R-II52, Mr = 52,000; and R-II51, Mr = 51,000) compared to two R-II isoforms in rat brain (R-II54 and R-II52). Polychromatic silver-stained peptide maps of purified R-II subunits indicated that peptides generated from both rat ovarian R-II52 and R-II51 were similar (if not identical) to the peptides of the neural form, R-II52, purified from rat brain. These peptides differed markedly from those generated from R-II54 of either rat ovary, brain, or heart. Ovarian R-II52/51 photoaffinity labeled with 8-N3-[32P]cAMP and analyzed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis was shown to consist of three (rather than two) isoelectric variants, which were similar to three variants resolved from rat brain R-II and clearly distinct from that of rat heart R-II54. An antibody which recognized both the R-II54 and R-II52/51 isoforms of rat ovarian extracts also recognized both forms of rat brain R-II (R-II54 and R-II52) and similar forms in extracts of rat adrenal and parotid glands. These results strongly suggest that the R-II52 isoform previously designated as a neural specific form of R-II is present in high concentrations in a nonneural tissue, the rat ovary.  相似文献   

16.
In order to study biosynthetic processing of the precursor for vasoactive intestinal peptide (preproVIP) in the human gut we have developed antisera against the five functional domains of the precursor molecule: preproVIP 22-79, peptide histidine methionine (PHM), preproVIP 111-122, VIP and preproVIP 156-170. The antisera were used to quantify and characterize VIP-precursor peptides by radioimmunoassay (RIA) together with high-pressure liquid Uchromatography (HPLC) and to examine their cellular localization and colocalization by immunocytochemistry. All five peptides were expressed but not in equimolar amounts as expected from the amino acid sequence of the precursor. However, the ratios between them were fairly constant throughout the gastrointestinal tract. The only exceptions were the lower concentrations of PHM and preproVIP 111-122 in the gastric antrum which could be explained by the presence of PHV (the C-terminally extended form of PHM which includes preproVIP 111-122) in large concentrations in this region. It was also found that the C-terminal lysine residue of preproVIP is not removed during processing. Immunocytochemically all preproVIP-derived peptides were shown in neuronal elements. They had a similar distribution throughout the gut suggesting coexistence, a finding which was supported by doublestaining. The findings indicate that differences in the posttranslational processing of preproVIP exist in subpopulations of neurons in the human gut.  相似文献   

17.
The use of an antiserum raised against the joining peptide sequence -23 to -14 of bovine pro-opiomelanocortin (POMC) enabled the detection of related immunoreactive sequences of peptides in bovine, porcine, mouse and guinea-pig pituitaries, as well as in mouse brain and cerebral cortex, guinea-pig cerebral cortex, and bovine hypothalamus. Gel chromatography of pituitary extracts (Sephadex G-75 and Bio-Gel P-4) indicated the presence of several immunoreactive joining peptide fragments ranging in the molecular weight range (Mr) of 1,500 to 2,300. Furthermore, high molecular weight (Mr greater than 22,500) immunoreactive-precursor from bovine anterior pituitary was readily digested with trypsin into an immunoreactive fragment of approximately Mr 1,500. Analyses of these immunoreactive peptides by reverse-phase high-performance liquid chromatography (HPLC) led to their resolution into six distinct peptides. The only apparent correspondence in the elution profiles of immunoreactive peptide profiles between different mammalian species was the identification of a similar fragment (Mr 2,000) from bovine and guinea-pig pituitaries. Thus, we conclude that immunoreactivity to the joining peptide region of POMC from various mammalian species exhibits a degree of heterogeneity in its composition. The relatively low levels of immunoreactivity in comparison to that of ACTH also suggest that the joining peptide domain may be further processed. The hormonal status of the joining peptide region remains to be determined.  相似文献   

18.
In this study, we have mapped and characterized a B cell epitope of sulfated glycoprotein ZP2 (ZP2) as a step toward the development of a multi-epitope zona pellucida (ZP) vaccine. Recombinant polypeptides expressed by random deoxyribonuclease-digested fragments of ZP2 cDNA were screened for binding to IE-3, a monoclonal antibody to murine ZP2. Positive clones contained cDNA inserts encoding polypeptide corresponding to ZP2(103-134). When normal or ovariectomized female mice were immunized with three overlapping peptides that span this region of ZP2 (101-120, 111-130, 121-140), only ZP2(121-140) elicited IgG antibodies that reacted with mouse ovarian ZP, indicative of the presence of native B epitope and helper T cell epitope in ZP2(121-140). To more finely map the ZP2 B cell epitope, a random peptide display library was screened with the IE-3 antibody, and a consensus tetramer sequence VxYK that matched the ZP2(123-126) sequence VRYK was located. Competitive immunofluorescence analysis with single alanine-substituted VxYK peptides ranked the relative contribution of the three critical B cell epitope residues as Y > V > K. A chimeric peptide was constructed that contained the YRYK motif of ZP2 and a bovine RNase T cell epitope. Although (C57BL/6xA/J) F1 (B6AF1) female mice immunized with the chimeric peptide developed ZP antibody response, this peptide elicited antibody only in mice of the histocompatibility complex (MHC) H-2(k or b) haplotype. In contrast, ZP2(121-140) peptide elicited antibody in inbred mice with three additional mouse MHC haplotypes. Moreover, although ZP2(121-140) contained a T cell epitope, no oophoritis was observed after immunization of B6AF1 mice with ZP2(121-140) in complete Freund's adjuvant (CFA). In a preliminary trial, female B6AF1 mice immunized with ZP2(121-140) in CFA had reduced litter sizes as compared with mice injected with CFA alone.  相似文献   

19.
The distribution of vasoactive intestinal peptide (VIP), bombesin and gastrin-cholecystokinin in the chicken was studied by radioimmunoassay of tissue extracts. VIP was present in high concentrations in colon (186 +/- 29 pmol/g), cloaca (116 +/- 27 pmol/g), jejunum (97 +/- 14 pmol/g) and pancreas (15 +/- 3 pmol/g) but not detected in lung, liver or thymus. The highest concentration of bombesin was in the proventriculus (92 +/- 13 pmol/g), negligible in remaining gut but found in brain. Gel chromatography indicated two forms of bombesin: one form eluting with bombesin-14 and the other with gastrin releasing peptide. Gastrin-like immunoreactivity was found in low levels in the gut and brain. The concentrations were higher with an antiserum which cross reacted with the carboxy terminus common to gastrin-17 and CCK compared to a gastrin specific antisera (P less than 0.01). This suggests that the carboxy terminal region has been conserved during evolution. Each distribution pattern of bombesin, VIP and gastrin CCK is different, and distinct from that found in mammals, suggesting specific roles for these peptides in birds.  相似文献   

20.
Antisera directed against the amino-terminus of porcine CCK 33 detects related immunoreactivity in rat brain extracts, the distribution of which follows that of CCK 8. Sephadex chromatography indicates that several immunoreactive peptides are present with a molecular weight range of 2600-3500. These peptides are likely to be CCK 39 or CCK 33 and the amino terminal segments of CCK 39/33 without the CCK 8 sequence. The presence of CCK 39/33 and its amino-terminal fragments without CCK 22 and its amino-terminal fragments confirms the absence of CCK 22 in the rat brain. This cleavage at CCK 22 is one of the major differences between the processing of CCK in rat brain and gut and may reflect differences in their physiological roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号