首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We conducted a 1-year survey in two humic shallow lakes from the floodplain of the Lower Paraná River, Laguna Grande Lake (LGL) and a relictual oxbow lake (ROL). We aimed to test two hypotheses: (1) the efficiency in light use of picoplankton (0.2–3 μm) is greater as light restriction increases and (2) the contribution of picoplankton to the total productivity is higher when the total photosynthetic biomass is lower. We performed PE curves for picoplankton and nano- and microplankton (>3 μm) using the 14C assimilation technique. The light environments of the water bodies differed mainly owing to the development of free floating plants on the surface of the ROL and the dominance of phytoplankton in LGL. Primary productivity patterns in LGL were seasonality driven whilst in the ROL they were related to the coverage of floating macrophytes, which promoted light limitation and a lower productivity. In LGL, nano- and microplankton were in general more productive and the relative contribution of picoplankton to the total phytoplankton production decreased with the increase in total photosynthetic biomass. Hence, our study extends previously observed patterns to subtropical shallow lakes, where seasonality and free floating plants may influence the dynamics of phytoplankton production.  相似文献   

2.
Global warming affects the hydrological cycle by increasing the frequency and intensity of extreme rainfall events and dry spells. These changes potentially affect the quantity and quality of dissolved organic matter (DOM) input into lakes. In this study, we investigated if changes in precipitation over a 3-year period correspond to changes in DOM and whether these changes affect light attenuation and plankton community composition. We sampled Lake Escondido, a shallow, oligotrophic Andean lake, nine times, analyzing coloured DOM and plankton community composition. During the study period, we observed that variations in the precipitation regime correlated with DOM parameters (water colour and molecular weight), and this, in turn, affected the plankton composition. Chlorophyll a concentrations of both phytoplanktonic fractions (less than and greater than 2 μm) were related to water colour and TDP. We observed in the small fraction (<2 μm) an increase in phycocyanin-rich cells during periods of high water colour. Larger phytoplanktonic cells (>2 μm) presented two biomass peaks corresponding to increases of the cyanophyte Chroococcus planctonicus and of the haptophyte Chrysochromulina parva. As precipitation decreased, the lake became more transparent, favouring C. planctonicus and mixotrophic oligotrich ciliates with endosymbiotic Chlorella. In the context of global climate change, our results highlight the potential impact of changes in precipitation patterns and, consequently, in DOM quality on the plankton community.  相似文献   

3.
Production rates, abundance, chlorophyll a (Chl a) concentrations and pigment composition were measured for three size classes (<2 μm, 2–11 μm and >11 μm) of phytoplankton from May to December 2000 in deep, mesotrophic, alpine lake Mondsee in Austria. The study focuses on differences among phytoplankton size fractions characterised by their surface area to volume ratio ([mml−1: mm3l−1]), pigment distribution patterns and photosynthetic rates. Particular attention was paid to autotrophic picophytoplankton (APP, fraction <2 μm) since this size fraction differed significantly from the two larger size fractions. Among the three fractions, APP showed the highest surface area to volume ratios and a high persistence in the pattern of lipophilic pigments between temporarily and spatially successive samples (about 80% similarity of pigment composition between samples over seasons and depths). The epilimnetic abundance of APP varied seasonally with an annual maximum of 180 × 10cells ml−1 in June (at 4–9 m). The minimum (October at 12 m) was more than an order of magnitude lower (4.9 × 103 ml−1). APP peaked during autumn and contributed between 24% and 42% to the total area-integrated Chl a (10–23 mg m−2) and between 16% and 58% to total area-integrated production (5–64 mg m−2  h−1) throughout seasons.  相似文献   

4.
Luz Allende 《Polar Biology》2009,32(3):493-501
The goal of this study was to address the top-down and bottom-up controls on different microbial web components (bacterioplankton, picophytoplankton, and >3 μm phytoplankton) in an Antarctic lake. Two experiments using a size fractionation approach and nutrient addition were conducted at microcosm scale (2.5 l). The variation in net growth rates (k′) of bacterioplankton and phytoplankton size fractions was analyzed after 5 days. The results determined significant differences; whereas bacterioplankton and large phytoplankton showed an increase in their k′ when their predators were removed, the picophytoplankton showed a decrease. All the studied plankton components presented the highest k′ when nutrients were added. It is suggested that, in this lake, both the top-down and bottom-up regulations account for the regulation of bacterioplankton and large phytoplankton. As for picophytoplankton, the bottom-up control was evident and grazing did not pose a negative impact and rather, had a positive effect probably due to liberation of nutrients.  相似文献   

5.
Alchichica is a warm-monomictic, oligotrophic lake whose phytoplanktonic biomass is dominated by large size (average ca. 55 μm) diatoms. The fast sinking phytoplankton leads to silica, and other nutrient exportation out of the productive zone of the lake. The aim of the present study was to identify and measure the sedimentation fluxes of the diatom species and their temporal dynamics to better understand the magnitude of silica and carbon fluxes. Sediment-traps were exposed at three different depths and collected monthly. A total of 13 diatom species were observed in the traps. The maximum diatom flux was in February (304 × 106 cells m−2 day−1) related to the winter diatom bloom. The diatom silica (DSi) fluxes varied from 2.2 to 2,997 mg m−2 day−1 and the diatom carbon (DC) fluxes from 1.2 to 2,918 mg m−2 d−1. Cyclotella alchichicana was the main contributor (>98%) to the total DSi and DC fluxes. The annual diatom (15 × 109 cells m−2 year−1), DSi (147 g m−2 year−1) and DC (92 g m−2 year−1) fluxes are higher than in other aquatic ecosystems of similar or even higher trophic conditions. Our findings in Alchichica are indicative of the relevance of the phytoplankton type and size in understanding the role tropical and oligotrophic lakes play regarding silica and carbon fluxes. In addition, our results support previous findings suggesting that inland aquatic ecosystems are more important than formerly thought in processing carbon, and can, therefore, affect regional carbon balances.  相似文献   

6.
 Phytoplankton biomass, community structure and productivity of the Great Astrolabe lagoon and surrounding ocean were studied using measurements of chlorophyll concentration and carbon uptake. The contribution of picophytoplankton to biomass, productivity and community structure was estimated by size fractionation, 14C-incubation and flow cytometry analysis. Picoplankton red fluorescence was demonstrated to be a proxy for chlorophyll <3 μm. Consequently, the percentage contribution to chl a<3 μm from each picoplankton group could be calculated using regression estimated values of ψ i (fg chl a per unit of red fluorescence). In the lagoon, average chlorophyll concentration was 0.8 mg m-3 with 45% of phytoplankton <3 μm. Primary production reached 1.3 g C m-2 day-1 with 53% due to phytoplankton <3 μm. Synechococcus was the most abundant group at all stations, followed by Prochlorococcus and picoeukaryotes. At all stations, Prochlorococcus represented less than 4% of the chl a <3 μm, Synechococcus between 85 and 95%, and Picoeukaryotes between 5 and 10%. In the upper 40 m of surrounding oceanic waters, phytoplankton biomass was dominated by the >3 μm size fraction. In deeper water, the <1 μm size fraction dominated. Prochlorococcus was the most abundant picoplankton group and their contributions to the chlorophyll a<3 μm were close to that of the picoeukaryotes (50% each). Accepted: 27 May 1999  相似文献   

7.
Serial monthly peptidase activities were assayed in the surface water of Lake Shinryu, located in the Chugoku district of Japan, using artificial fluorescent peptidase substrates. The results indicated that the lake water had higher aminopeptidase activities than endopeptidase activities except in November and December, whereas lake water filtrated using membranes with a pore size of 0.2 μm showed higher endopeptidase activities than aminopeptidase activities from June to December, with peaks in June and November. The serial aminopeptidase activity profile was relatively similar to that of the chlorophyll-a concentration. The size distribution of aminopeptidase activities indicated that half of the total activity was retained in the fraction between 5 and 100 μm. These results suggest that phytoplankton participate in the digestion of peptides with aminopeptidase activities. Electrophoretic analysis detected the presence of three peptidase bands (1, 2, and 3) in the lake water that passed through the 0.2-μm membranes. Samples from June, September, and November dominantly contained these active bands in different electrophoretic profiles.  相似文献   

8.
The limnological features of Lake Boeckella, the main water body of Esperanza/Hope Bay (Antarctic Peninsula), were evaluated over a 16-year period, under a climate change context evidenced by the increasing air temperature trend reported for this region for the last 50 years. We analyzed the physicochemical and phytoplankton data of the lake obtained from 1991 to 2007 during the austral summers. At the beginning of January 2001, a sudden water level drop (~3 m) occurred in Lake Boeckella as a consequence of an extremely high water discharge to the sea. This was triggered by the progressive thawing of the permafrost in the basin of the system. After this disturbance, nutrients, conductivity, chlorophyll a (Chl a) and picoplankton density showed strong peaks. The pre-draining and post-draining periods showed significant differences for most of the limnological variables analyzed. Secchi disk depth significantly decreased throughout the study period, resulting in a thinner euphotic layer. Chrysophyceae and Volvocales dominated the >2 μm phytoplankton fraction in the lake, but from 2004 onwards, other small-sized eukaryotic algae (3–5 μm) also became very abundant. Autotrophic picoplankton showed a significant peak during the summer when the water level decreased. A shift in their composition was observed through the study period: in 1998, picocyanobacteria were numerically dominant; from 2002 onwards, picoeukaryotes increased and became dominant in 2004. This study suggests that climate change may trigger the thawing of the permafrost in the catchments of Maritime Antarctic lakes, leading to catastrophic draining events, which favor natural eutrophication processes.  相似文献   

9.
Effects of fish predation propagate through aquatic food webs, where the classical grazing food chain and microbial loop are interwoven by trophic interactions. The overall impact on aquatic food webs is further complicated because fish may also exert bottom-up controls through nutrient regeneration. Yet, we still have limited information about cascading effects among fish, zooplankton, phytoplankton, and microbes. In this study, we performed a mesocosm experiment to evaluate effects of fish introduction on plankton communities. Six plots were set in factorial combination with fish introduction and rice straw plowing in a paddy field, and the experiment was continued for 4 weeks. Introduction of fish significantly increased chlorophyll a concentrations in smaller size fractions (<15 μm) and abundances of filamentous bacteria (>5 μm in length) and heterotrophic nanoflagellates in 3–15 μm fraction. Microbes in 0.8–3 μm fraction showed increasing but not significant trends in response to fish introduction. These results indicate cascading effects of fish predation operating via two pathways, one through grazing food chain and the other through microbial food web. Phytoplankton community compositions shifted in similar fashion in all plots until 1 week after fish introduction, and then diverged between plots with and without fish thereafter. Bottom-up effects of fish introduction were suggested by increases of total chlorophyll a and inedible phytoplankton species in response to fish introduction. This study provides an example of how fish predation regulates biomass and structure of phytoplankton and microbial communities.  相似文献   

10.
The algal, protozoan and metazoan communities within different drift-ice types (newly formed, pancake and rafted ice) and in under-ice water were studied in the Gulf of Bothnia in March 2006. In ice, diatoms together with unidentified flagellates dominated the algal biomass (226 ± 154 μg ww l−1) and rotifers the metazoan and protozoan biomass (32 ± 25 μg ww l−1). The under-ice water communities were dominated by flagellates and ciliates, which resulted in lower biomasses (97 ± 25 and 21 ± 14 μg ww l−1, respectively). The under-ice water and newly formed ice separated from all other samples to their own cluster in hierarchical cluster analysis. The most important discriminating factors, according to discriminant analysis, were chlorophyll-a, phosphate and silicate. The under-ice water/newly formed ice cluster was characterized by high nutrient and low chlorophyll-a values, while the opposite held true for the ice cluster. Increasing trends in chlorophyll-a concentration and biomass were observed with increasing ice thickness. Within the thick ice columns (>40 cm), the highest chlorophyll-a concentrations (6.6–22.2 μg l−1) were in the bottom layers indicating photoacclimation of the sympagic community. The ice algal biomass showed additional peaks in the centric diatom-dominated surface layers coinciding with the highest photosynthetic efficiencies [0.019–0.032 μg C (μg Chl-a −1 h−1) (μE m−2 s−1)−1] and maximum photosynthetic capacities [0.43-1.29 μg C (μg Chl-a −1 h−1)]. Rafting and snow-ice formation, determined from thin sections and stable oxygen isotopic composition, strongly influenced the physical, chemical and biological properties of the ice. Snow-ice formation provided the surface layers with nutrients and possibly habitable space, which seemed to have favored centric diatoms in our study.  相似文献   

11.
Romo  Susana  Miracle  Rosa 《Hydrobiologia》1994,275(1):153-164
A long-term phytoplankton study was carried out in the Albufera of Valencia, a shallow hypertrophic lake (surface area 21 km2, mean depth 1 m, total inorganic nitrogen load 155 g m-2 y-1, total inorganic phosphate load 15 g m-2 y-1) from 1980 to 1988. The lake functions as a reservoir for the surrounding rice cultivation. From 1940's to 1988, its phytoplankton assemblage has been altered from a mesotrophic to a hypertrophic character, as consequence of the increasing pollution. For 1980–88, annual variations in the phytoplankton were less pronounced than seasonal changes. The hypertrophic and morphometric features of the lake favoured the stability of the phytoplankton assemblage and chlorophyll a levels during the study period. Seasonal and horizontal distribution of the total phytoplankton abundance and biomass were highly influenced by the hydrological cycle of the lagoon. Compared with other shallow nutrient rich lakes, the Albufera of Valencia is similar to the shallow hypertrophic lakes of the Netherlands.  相似文献   

12.
We evaluated a biomanipulation program to test for short-term changes in water quality (chlorophyll a, Secchi depth, total phosphorus) and macrozooplankton biomass following partial removal of omnivorous gizzard shad Dorosoma cepedianum. The removal occurred at a eutrophic subtropical lake, and responses were compared to an unmanipulated control lake using a before-after-control-impact paired series analysis. The removal reduced the biomass of large (>300 mm) gizzard shad by 75% over 2 years via a subsidized commercial gill net fishery. However, the total population biomass of gizzard shad was reduced by approximately 32% from an average pre-manipulation biomass of 224 kg ha−1 due to the size selectivity of the gear, which did not effectively capture small fish (<300 mm). No significant short-term changes in chlorophyll a concentration, Secchi depth, total phosphorus concentration or macrozooplankton biomass were detected following biomanipulation. The partial removal may have fallen short of the biomass reduction required to cause ecosystem responses. Our results suggest that moderate omnivore removals (i.e., <40% biomass reduction) will have little short-term benefits to these lakes, and future manipulations should use a less size-selective gear to achieve a larger total biomass reduction.  相似文献   

13.
Replicated, factorial mesocosm experiments were conducted across Europe to study the effects of nutrient enrichment and fish density on macrophytes and on periphyton chlorophyll a (chl-a) with regard to latitude. Periphyton chl-a densities and plant decline were significantly related to nutrient loading in all countries. Fish effects were significant in a few sites only, mostly because of their contribution to the nutrient pool. A saturation-response type curve in periphyton chl-a with nutrients was found, and northern lakes achieved higher densities than southern lakes. Nutrient concentration and phytoplankton chl-a necessary for a 50% plant reduction followed a latitudinal gradient. Total phosphorus values for 50% plant disappearance were similar from Sweden (0.27 mg L−1) to northern Spain (0.35 mg L−1), but with a sharp increase in southern Spain (0.9 mg L−1). Planktonic chl-a values for 50% plant reduction increased monotonically from Sweden (30 μg L−1) to València (150 μg L−1). Longer plant growing-season, higher light intensities and temperature, and strong water-level fluctuations characteristic of southern latitudes can lead to greater persistence of macrophyte biomass at higher turbidities and nutrient concentration than in northern lakes. Results support the evidence that latitudinal differences in the functioning of shallow lakes should be considered in lake management and conservation policies.  相似文献   

14.
The abundance and composition of phytoplankton were investigated at six stations along a transect from the Barguzin River inflow to the central basin of Lake Baikal in August 2002 to clarify the effect of the river inflow on the phytoplankton community in the lake. The water temperature in the epilimnion was high near the shore at Station 1 (17.3°C), probably due to the higher temperature of the river water, and gradually decreased offshore at Station 6 (14.5°C). Thermal stratification developed at Stations 2–6, and a thermocline was observed at a 17–22-m depth at Stations 2–4 and an 8–12-m depth at Stations 5 and 6. The concentrations of nitrogen and phosphorus nutrients in the epilimnion at all stations were <1.0 μmol N l−1 and <0.16 μmol P l−1, respectively. Relatively high concentrations of nutrients (0.56–7.38 μmol N l−1 and 0.03–0.28 μmol P l−1) were detected in the deeper parts of the euphotic zone. Silicate was not exhausted at all stations (>20 μmol Si l−1). The chlorophyll a (chl. a) concentration was high (>10 μg l−1) near the shore at Station 1 and low (<3 μg l−1) at five other stations. The <2 μm fraction of chl. a in Stations 2–6 ranged between 0.80 and 1.85 μg l−1, and its contribution to total chl. a was high (>60%). In this fraction, picocyanobacteria were abundant at all stations and ranged between 5 × 104 and 5 × 105 cells ml−1. In contrast, chl. a in the >2 μm fraction varied significantly (0.14–11.17 μg l−1), and the highest value was observed at Station 1. In this fraction, the dominant phytoplankton was Aulacoseira and centric diatoms at Station 1 and Cryptomonas, Ankistrodesmus, Asterionella, and Nitzschia at Stations 2–6. The present study demonstrated the dominance of picophytoplankton in the pelagic zone, while higher abundance of phytoplankton dominated by diatoms was observed in the shallower littoral zone. These larger phytoplankters in the littoral zone probably depend on nutrients from the Barguzin River.  相似文献   

15.
Numerous (0.5 to 4.8 × 105 cells/ml), small phytoplankton (smaller than 0.5–1 × 1–2 μm in cell size, picophytoplankton) were distributed in the halocline (depth 2–12 m, 4–14 practical salinity units) of the saline meromictic lake, Lake Suigetsu (35°35′ N, 135°52′ E), located in the central part of the coast of Wakasa Bay along the Japan Sea in Fukui Prefecture, Japan. Vertical distribution of phytoplankton revealed that the maximum number of picophytoplankton was always observed near or a little deeper than the oxic-anoxic boundary layer (depth 5–6 m); they were dominant phytoplankton in the water layer deeper than the oxic-anoxic boundary from July to late September 2005. Spectral analysis of autofluorescence emitted from the particle fractions smaller than 5 μm measured with a spectrofluorometer and from individual cells measured with a microscope photodiode array detector revealed that the major component of picophytoplankton was phycoerythrin-rich, unicellular cyanobacteria (picocyanobacteria). Eukaryotic phytoplankton about 2.5 μm in diameter were also found, but the numbers were low. Fluorescence intensity of chlorophyll a at 685 nm (room temperature) emitted from the particle fractions smaller than 5 μm was increased by the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These observations indicated that at least some picophytoplankton had a functional photosystem II in the halocline where sulfide, the potential inhibitor of oxygenic photosynthesis, was always present. The large abundance together with their physiological potency suggest that picophytoplankton are one of the important primary producers in the halocline of Lake Suigetsu. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
Lake ülemiste, the drinking water reservoir of Estonia’s capital city Tallinn, was biomanipulated by manual removal of cyprinids in 2004–2006 and its impact on water quality in the vegetation period was studied. A total biomass of 156 tonnes corresponding to 160 kg ha−1 of fish, predominantly cyprinids, were removed. A decline in the unit catches of fishing was observed. The removed fish biomass versus phosphorus concentration of the lake was considered sufficient to reduce the impact of cyprinids on water quality. The phosphorus removed within fish biomass corresponded to 38 μg l−1 and 21% of the external phosphorus load of the fishing period. The mean total phosphorus concentration dropped from >50 to ≤36 μg l−1. However, the densities of planktivorous young-of-the-year percids remained high and the role of zooplankton grazing in improving water quality was found non-significant or transient. The cladocerans biomass decreased and the small-sized Daphnia cucullata remained almost the only daphnid in Lake ülemiste during and after the manipulation. Predomination of filamentous cyanobacteria was replaced by a more diverse phytoplankton composition and co-domination of micro- and pico-sized colonial cyanobacteria during summer. Mean phytoplankton biomass decreased from 15 to 6 mg l−1 primarily as a result of decreased in-lake TP availability. The Secchi disc transparency increased only in May 2005–2007. The effects of coincidental events, a decline of external loading of phosphorus and a simultaneous flushing induced by heavy rainfall, on lake water quality are discussed with some implications to the future management of the reservoir.  相似文献   

17.
An in situ transmission electron microscopic study of biomass samples concentrated from oligotrophic lake water revealed a variety of virus-infected microbial cells and many free viruses and virus-like particles. The most abundant group of microorganisms in screened and filtered water-column samples were 2 μm or less in diameter, and included representatives of several oligotrophic genera, Prosthecomicrobium, Ancyclobacter, Caulobacter and Hyphomicrobium. Among the prokaryotic host cells, which included both heterotrophs and autotrophs, on the basis of electron microscope observations, approximately 17% were infected with bacteriophage or bore adherent phage particles on their surfaces. Several bacterial morphotypes were observed among the prokaryotic hosts. Water samples passed through a 20-μm Nitex screen allowed us to concentrate and examine the larger host cells as well, including several species of single-celled algae and two amoeba species. The infected algal cells included those Chlorella-like in appearance, photosynthetic flagellates and others that could not be positively identified. About one-third of the eukaryotic cells were infected by viruses that were larger (150–200 nm) and structurally more complex than bacteriophages (50–60 nm). None of the viruses have been isolated, but when 0.2 μm filtrate from a biomass sample was spotted onto lawns of four representative heterotrophs and a Chlorella, the clearing observed was taken as evidence of lysis. Cyanobacterial lawns showed no plaques. Thin sections of two amoeba showed food vacuoles containing what appeared to be virus particles of a type seen in certain prokaryotic and eukaryotic cells in the biomass. Received: 26 January 1996 / Received revision: 10 July 1996 / Accepted: 5 August 1996  相似文献   

18.
In shallow temperate lakes many ecological processes depend on submerged macrophytes. In subtropical and tropical lakes, free-floating macrophytes may be equally or more important. We tested the hypothesis that different macrophyte growth forms would be linked with different bottom-up and top-down mechanisms in out-competing phytoplankton. We compared experimentally the effects of submerged and free-floating plants on water chemistry, phytoplankton biomass, zooplankton and fish community structure in a shallow hypertrophic lake (Lake Rodó, 34°55S 56°10W, Uruguay). Except for the retention of suspended solids, we found no other significant bottom-up process connected with either Eichhornia crassipes or Potamogeton pectinatus. Free-floating plants had a lower abundance of medium-sized zooplankton than any other microhabitat and submerged plants were apparently preferred by microcrustaceans. Fish showed a differential habitat use according to species, size-class and feeding habits. Dominant omnivore-planktivores, particularly the smallest size classes, preferred submerged plants. In contrast, omnivore-piscivores were significantly associated with free-floating plants. The density of omnivorous-planktivorous fish, by size class, significantly explained the distribution of medium-sized zooplankton, the high number of size 0 fish being the main factor. The abiotic environment and the structure of the zooplankton community explained little of the fish distribution pattern. Our results suggest that bottom-up effects of free-floating plants are weak when cover is low or intermediate. Top-down effects are complex, as effects on zooplankton and fish communities seem contradictory. The low piscivores:planktivores ratio in all microhabitats suggests, however, that cascading effects on phytoplankton through free-floating plant impacts on piscivorous fish are unlikely to be strong.  相似文献   

19.
The influence of the size distribution of phytoplankton on changes in the planktonic food web structures with eutrophication was examined using natural planktonic communities in two world-famous lakes: Lake Baikal and Lake Biwa. The size distribution of phytoplankton and the ratio of heterotrophic to autotrophic biomass (H/A ratio), indicating the balance between primary production and its consumption, were investigated in the lakes of different trophic status. The results revealed that microphytoplankton (>20μm) in mesotrophic Lake Biwa, and picophytoplankton (<2μm) or nanophytoplankton (2–20μm) in oligotrophic Lake Baikal, comprised the highest proportion of the total phytoplankton biomass. The H/A ratio was lower in Lake Biwa (<1) than in Lake Baikal (>1). The low H/A ratio in Lake Biwa appeared to be the consequence of the lack of consumption of the more abundant microphytoplankton, which were inferior competitors in nutrient uptake under oligotrophic conditions but less vulnerable to grazing. As a result, unconsumed microphytoplankton accumulated in the water column, decreasing the H/A ratio in Lake Biwa. Our results showed that food web structure and energy flow in planktonic communities were greatly influenced by the size distribution of phytoplankton, in conjunction with bottom-up (nutrient uptake) and top-down (grazing) effects at the trophic level of primary producers.  相似文献   

20.
Picoeukaryotes dominate the phytoplankton of Lake Balaton—the largest shallow lake in Central Europe—in the winter period. We examined the annual dynamics of picoplankton abundance and composition in the lake in order to establish if the picoeukaryotes merely survive the harsher winter conditions or they are able to grow in the ice-covered lake when the entire phytoplankton is limited by low light and temperature. Lake Balaton has an annual temperature range of 1–29°C, and it is usually frozen between December and February for 30–60 days. In the spring-autumn period phycocyanin and phycoerythrin rich Cyanobacteria are the dominant picoplankters, and picoeukaryotes are negligible. Our five-year study shows the presence of three types of picophytoplankton assemblages in Lake Balaton: (1) Phycoerythrin-rich Cyanobacteria—the dominant summer picoplankters in the mesotrophic lake area; (2) Phycocyanin-rich Cyanobacteria—the most abundant summer picoplankters in the eutrophic lake area and; (3) Picoeukaryotes—the dominant winter picoplankters in the whole lake. The observed winter abundance of picoeukaryotes was high (up to 3 × 105 cells ml−1), their highest biomass (520 μg l−1) exceeded the maximum summer biomass of picocyanobacteria (500 μg l−1). Our results indicate that the winter predominance of picoeukaryotes is a regular phenomenon in Lake Balaton, irrespective of the absence or presence of the ice cover. Picoeukaryotes are able to grow at as low as 1–2°C water temperature, while the total phytoplankton biomass show the lowest annual values in the winter period. In agreement with earlier findings, the contribution of picocyanobacteria to the total phytoplankton biomass in Lake Balaton is inversely related to the total phytoplankton biomass, whereas no such relationship was observable in the case of picoeukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号