首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EcoP1I methyltransferase (M.EcoP1I) belongs to the type III restriction-modification system encoded by prophage P1 that infects Escherichia coli. Binding of M.EcoP1I to double-stranded DNA and single-stranded DNA has been characterized. Binding to both single- and double-stranded DNA could be competed out by unlabeled single-stranded DNA. Metal ions did not influence DNA binding. Interestingly, M.EcoP1I was able to methylate single-stranded DNA. Kinetic parameters were determined for single- and double-stranded DNA methylation. This feature of the enzyme probably functions in protecting the phage genome from restriction by type III restriction enzymes and thus could be considered as an anti-restriction system. This study describing in vitro methylation of single-stranded DNA by the type III methyltransferase EcoP1I allows understanding of the mechanism of action of these enzymes and also their role in the biology of single-stranded phages.  相似文献   

2.
Type III restriction enzymes are multifunctional heterooligomeric enzymes that cleave DNA at a fixed position downstream of a non-symmetric recognition site. For effective DNA cleavage these restriction enzymes need the presence of two unmethylated, inversely oriented recognition sites in the DNA molecule. DNA cleavage was proposed to result from ATP-dependent DNA translocation, which is expected to induce DNA loop formation, and collision of two enzyme-DNA complexes. We used scanning force microscopy to visualise the protein interaction with linear DNA molecules containing two EcoP15I recognition sites in inverse orientation. In the presence of the cofactors ATP and Mg(2+), EcoP15I molecules were shown to bind specifically to the recognition sites and to form DNA loop structures. One of the origins of the protein-clipped DNA loops was shown to be located at an EcoP15I recognition site, the other origin had an unspecific position in between the two EcoP15I recognition sites. The data demonstrate for the first time DNA translocation by the Type III restriction enzyme EcoP15I using scanning force microscopy. Moreover, our study revealed differences in the DNA-translocation processes mediated by Type I and Type III restriction enzymes.  相似文献   

3.
Selected and counterselected oligodeoxynucleotide sequences were identified in the total sequence of bacteriophage T7 DNA using a statistical criterion derived for a probability model of the Markov chain type. All extremely rare tetra- and pentadeoxynucleotides are (or contain) recognition sequences for the Escherichia coli DNA methylases dam or dcm. Most of the 37 hexadeoxynucleotides absent from T7 DNA are recognition sequences for type II modification/restriction enzymes of E. coli or related species. In contrast to most restriction sites counterselected during evolution, the EcoP1 site GGTCT occurs 126 times in the T7 genome, and phage T7 replication is severely repressed in P1-lysogenic host cells. We demonstrate that the frequency of the EcoP1 site is determined by that of the overlapping recognition sites for T7 primase, an essential phage enzyme. The recognition site of a type III enzyme, EcoP15, is also not counterselected. In T7 DNA all 36 EcoP15 sites are arranged in such a manner that the sequence CAGCAG is confined to the H strand, the complementary sequence CTGCTG to the L strand. This "strand bias" is highly significant and, therefore, very probably selected. A functional relation between this strand bias and the refractive behaviour of phage T7 to EcoP15 restriction is suspected.  相似文献   

4.
A type I restriction-modification enzyme will bind to an unmethylated target sequence in DNA and, while still bound to the target, translocate DNA through the protein complex in both directions. DNA breakage occurs when two translocating complexes collide. However, if type I restriction-modification systems bind to unmodified target sequences within the resident bacterial chromosome, as opposed to incoming 'foreign' DNA, their activity is curtailed; a process known as restriction alleviation (RA). We have identified two genes in Escherichia coli, rnhA and recG, mutations in which lead to the alleviation of restriction. Induction of RA in response to these mutations is consistent with the production of unmodified target sequences following DNA synthesis associated with both homologous recombination and R-loop formation. This implies that a normal function of RA is to protect the bacterial chromosome when recombination generates unmodified products. For EcoKI, our experiments demonstrate the contribution of two pathways that serve to protect unmodified DNA in the bacterial chromosome: the primary pathway in which ClpXP degrades the restriction endonuclease and a mechanism dependent on the lar gene within Rac, a resident, defective prophage of E. coli K-12. Previously, the potential of the second pathway has only been demonstrated when expression of lar has been elevated. Our data identify the effect of lar from the repressed prophage.  相似文献   

5.
The IncI1 plasmid ColIb-P9 was found to encode an antirestriction function. The relevant gene, ard (alleviation of restriction of DNA), maps about 5 kb from the origin of transfer, in the region transferred early during bacterial conjugation. Ard inhibits both restriction and modification by each of the four type I systems of Escherichia coli tested, but it had no effect on restriction by either EcoRI, a type II system, or EcoP1, a type III system. The nucleotide sequence of the ColIb ard gene was determined; the predicted molecular weight of the Ard polypeptide is 19,193. The proposed polypeptide chain contains an excess of 25 negatively charged amino acids, suggesting that its overall character is very acidic. Deletion analysis of the gene revealed that the Ard protein contained a distinct functional domain located in the COOH-terminal half of the polypeptide. We suggest that the biological role of the ColIb Ard protein is associated with overcoming host-controlled restriction during bacterial conjugation.  相似文献   

6.
EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site-bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site-bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes.  相似文献   

7.
DNA cleavage by type III restriction endonucleases requires two inversely oriented asymmetric recognition sequences and results from ATP-dependent DNA translocation and collision of two enzyme molecules. Here, we characterized the structure and mode of action of the related EcoP1I and EcoP15I enzymes. Analytical ultracentrifugation and gel quantification revealed a common Res(2)Mod(2) subunit stoichiometry. Single alanine substitutions in the putative nuclease active site of ResP1 and ResP15 abolished DNA but not ATP hydrolysis, whilst a substitution in helicase motif VI abolished both activities. Positively supercoiled DNA substrates containing a pair of inversely oriented recognition sites were cleaved inefficiently, whereas the corresponding relaxed and negatively supercoiled substrates were cleaved efficiently, suggesting that DNA overtwisting impedes the convergence of the translocating enzymes. EcoP1I and EcoP15I could co-operate in DNA cleavage on circular substrate containing several EcoP1I sites inversely oriented to a single EcoP15I site; cleavage occurred predominantly at the EcoP15I site. EcoP15I alone showed nicking activity on these molecules, cutting exclusively the top DNA strand at its recognition site. This activity was dependent on enzyme concentration and local DNA sequence. The EcoP1I nuclease mutant greatly stimulated the EcoP15I nicking activity, while the EcoP1I motif VI mutant did not. Moreover, combining an EcoP15I nuclease mutant with wild-type EcoP1I resulted in cutting the bottom DNA strand at the EcoP15I site. These data suggest that double-strand breaks result from top strand cleavage by a Res subunit proximal to the site of cleavage, whilst bottom strand cleavage is catalysed by a Res subunit supplied in trans by the distal endonuclease in the collision complex.  相似文献   

8.
Type III restriction/modification systems recognize short non-palindromic sequences, only one strand of which can be methylated. Replication of type III-modified DNA produces completely unmethylated recognition sites which, according to classical mechanisms of restriction, should be signals for restriction. We have shown previously that suicidal restriction by the type III enzyme EcoP15I is prevented if all the unmodified sites are in the same orientation: restriction by EcoP15I requires a pair of unmethylated, inversely oriented recognition sites. We have now addressed the molecular mechanism of site orientation-specific DNA restriction. EcoP15I is demonstrated to possess an intrinsic ATPase activity, the potential driving force of DNA translocation. The ATPase activity is uniquely recognition site-specific, but EcoP15I-modified sites also support the reaction. EcoP15I DNA restriction patterns are shown to be predetermined by the enzyme-to-site ratio, in that site-saturating enzyme levels elicit cleavage exclusively between the closest pair of head-to-head oriented sites. DNA restriction is blocked by Lac repressor bound in the intervening sequence between the two EcoP15I sites. These results rule out DNA looping and strongly suggest that cleavage is triggered by the close proximity of two convergently tracking EcoP15I-DNA complexes.  相似文献   

9.
The presence of restriction enzymes in bacterial cells has been predicted by either classical phage restriction-modification (R-M) tests, direct in vitro enzyme assays or more recently from bacterial genome sequence analysis. We have applied phage R-M test principles to the transformation of plasmid DNA and established a plasmid R-M test. To validate this test, six plasmids that contain BamHI fragments of phage lambda DNA were constructed and transformed into Escherichia coli strains containing known R-M systems including: type I (EcoBI, EcoAI, Eco124I), type II (HindIII) and type III (EcoP1I). Plasmid DNA with a single recognition site showed a reduction of relative efficiency of transformation (EOT = 10(-1)-10(-2)). When multiple recognition sites were present, greater reductions in EOT values were observed. Once established in the cell, the plasmids were subjected to modification (EOT = 1.0). We applied this test to screen E.coli clinical strains and detected the presence of restriction enzymes in 93% (14/15) of cells. Using additional subclones and the computer program, RM Search, we identified four new restriction enzymes, Eco377I, Eco585I, Eco646I and Eco777I, along with their recognition sequences, GGA(8N)ATGC, GCC(6N)TGCG, CCA(7N)CTTC, and GGA(6N)TATC, respectively. Eco1158I, an isoschizomer of EcoBI, was also found in this study.  相似文献   

10.
Two novel types of alleviation of DNA restriction by the EcoKI restriction endonuclease are described. The first type depends on the presence of the gam gene product (Gam protein) of bacteriophage lambda. The efficiency of plating of unmodified phage lambda is greatly increased when the restricting Escherichia coli K-12 host carries a gam+ plasmid. The effect is particularly striking in wild-type strains and, to a lesser extent, in the presence of sbcC and recA mutations. In all cases, Gam-dependent alleviation of restriction requires active recBCD genes of the host and recombination (red) genes of the infecting phage. The enhanced capacity of Gam-expressing cells to repair DNA strand breaks might account for this phenomenon. The second type is caused by the presence of a plasmid in a restricting host lacking RecBCD enzyme. Commonly used plasmids such as the cloning vector pACYC184 can produce such an effect in strains carrying recB single mutations or in recBC sbcBC strains. Plasmid-mediated restriction alleviation in recBC sbcBC strains is independent of the host RecF, RecJ, and RecA proteins and phage recombination functions. The presence of plasmids can also relieve restriction in recD strains. This effect depends, however, on the RecA function in the host. The molecular mechanism of the plasmid-mediated restriction alleviation remains unclear.  相似文献   

11.
EcoP15I is the prototype of the Type III restriction enzyme family, composed of two modification (Mod) subunits to which two (or one) restriction (Res) subunits are then added. The Mod subunits are responsible for DNA recognition and methylation, while the Res subunits are responsible for ATP hydrolysis and cleavage. Despite extensive biochemical and genetic studies, there is still no structural information on Type III restriction enzymes. We present here small-angle X-ray scattering (SAXS) and analytical ultracentrifugation analysis of the EcoP15I holoenzyme and the Mod(2) subcomplex. We show that the Mod(2) subcomplex has a relatively compact shape with a radius of gyration (R(G)) of ~37.4 ? and a maximal dimension of ~110 ?. The holoenzyme adopts an elongated crescent shape with an R(G) of ~65.3 ? and a maximal dimension of ~218 ?. From reconstructed SAXS envelopes, we postulate that Mod(2) is likely docked in the middle of the holoenzyme with a Res subunit at each end. We discuss the implications of our model for EcoP15I action, whereby the Res subunits may come together and form a "sliding clamp" around the DNA.  相似文献   

12.
Deletion analysis indicated that the phage lambda restriction alleviation gene(s) ral resides between the cIII and N genes. The Ral+ phenotype was expressed only when lambda ral+ carried a modification such that it was resistant to restriction by the host specificity system. Under these conditions, Ral function protected superinfecting unmodified phages from restriction by EcoK or EcoB but not from restriction by EcoP1. Ral-protected phage DNA was not concomitantly K and B modified, but rather received only the modification specified by the system of the restricting host. Possible mechanisms for Ral action are discussed. Of the other lambdoid phages tested, the hybrid phage lambda rev had Ral activity, whereas phi 80vir and one lambda-P22 hybrid did not. The restriction alleviation activity of lambda rev called Lar, may be the same as the activity expressed in sbcA- strains of Escherichia coli, but it was functionally separable from exonuclease VIII activity (the product of the recE gene), which is also expressed in sbcA- strains.  相似文献   

13.
One subunit of both type I and type III restriction and modification enzymes contains motifs characteristic of DEAD box proteins, which implies that these enzymes may be DNA helicases. This subunit is essential for restriction, but not modification. The current model for restriction by both types of enzyme postulates that DNA cutting is stimulated when two enzyme complexes bound to neighbouring target sequences meet as the consequence of ATP-dependent DNA translocation. For type I enzymes, this model is supported by in vitro experiments, but the predicted co-operative interactions between targets have not been detected by assays that monitor restriction in vivo. The experiments reported here clearly establish the required synergistic effect but, in contrast to earlier experiments, they use Escherichia coli K-12 strains deficient in the restriction alleviation function associated with the Rac prophage. In bacteria with elevated levels of EcoKI the co-operative interactions are obscured, consistent with co-operation between free enzyme and that bound at target sites. We have made changes in three of the motifs characteristic of DEAD box proteins, including motif III, which in RecG is implicated in the migration of Holliday junctions. Conservative changes in each of the three motifs impair restriction.  相似文献   

14.
This paper presents the nucleotide sequence of the mod-res operon of phage P1, which encodes the two structural genes for the EcoP1 type III restriction and modification system. We have also sequenced the mod gene of the allelic EcoP15 system. The mod gene product is responsible for binding the system-specific DNA recognition sequences in both restriction and modification; it also catalyses the modification reaction. A comparison of the two mod gene product sequences shows that they have conserved amino and carboxyl ends but have completely different sequences in the middle of the molecules. Two alleles of the EcoP1 mod gene that are defective in modification but not in restriction were also sequenced. The mutations in both alleles lie within the non-conserved regions.  相似文献   

15.
The type III restriction-modification enzyme EcoP15I requires the interaction of two unmethylated, inversely oriented recognition sites 5'-CAGCAG in head to head configuration to allow an efficient DNA cleavage. It has been hypothesized that two convergent DNA-translocating enzyme-substrate complexes interact to form the active cleavage complex and that translocation is driven by ATP hydrolysis. Using a half-automated, fluorescence-based detection method, we investigated how the distance between two inversely oriented recognition sites affects DNA cleavage efficiency. We determined that EcoP15I cleaves DNA efficiently even for two adjacent head to head or tail to tail oriented target sites. Hence, DNA translocation appears not to be required for initiating DNA cleavage in these cases. Furthermore, we report here that EcoP15I is able to cleave single-site substrates. When we analyzed the interaction of EcoP15I with DNA substrates containing adjacent target sites in the presence of non-hydrolyzable ATP analogues, we found that cleavage depended on the hydrolysis of ATP. Moreover, we show that cleavage occurs at only one of the two possible cleavage positions of an interacting pair of target sequences. When EcoP15I bound to a DNA substrate containing one recognition site in the absence of ATP, we observed a 36 nucleotide DNaseI-footprint that is asymmetric on both strands. All of our footprinting experiments showed that the enzyme did not cover the region around the cleavage site. Analyzing a DNA fragment with two head to head oriented recognition sites, EcoP15I protected 27-33 nucleotides around the recognition sequence, including an additional region of 26 bp between both cleavage sites. For all DNA substrates examined, the presence of ATP caused altered footprinting patterns. We assume that the altered patterns are most likely due to a conformational change of the enzyme. Overall, our data further refine the tracking-collision model for type III restriction enzymes.  相似文献   

16.
Red/ET重组及其在生物医学中的应用   总被引:3,自引:2,他引:1  
王军平  张友明   《生物工程学报》2005,21(3):502-506
通过应用Rac噬菌体的RecE RecT和λ噬菌体的RedαRedβ系统而建立的DNA工程平台———Red ET重组,是一种不依赖于限制性内切酶的分子克隆新技术。运用该技术能够介导PCR产物或寡核苷酸对目标基因进行剪切、插入、融合及突变等多种操作,在生物医学领域里具有广阔的应用前景,尤其在基因组功能研究中对BACs、PACs和细菌染色体的打靶修饰以及基因敲除动物DNA靶分子的快速构建等方面最有效。随着Red ET重组的推广与应用,该技术本身也在不断被改进,在工作效率得到显著提高的同时,其操作也变得更加简单、省时、省力。结合自身的一些研究结果,对Red ET重组的技术特点、发展现状和在生物医学中的应用进行了详细阐述。  相似文献   

17.
We have constructed phage lambda and plasmid DNA substrates (lambda tk2 and ptk2) that contain two defective herpesvirus thymidine kinase (tk) genes that can be used to detect homologous recombination during the transfer of DNA into mouse L cells deficient in thymidine kinase activity. The recombination event reconstructs a wild-type tk gene and is scored because it converts Tk- cells to Tk+. Using this system, we have shown that (i) both intramolecular and intermolecular homologous recombination can be detected after gene transfer; (ii) the degree of recombination decreases with decreasing tk gene homology; and (iii) the efficiency of recombination can be stimulated 10- to 100-fold by cutting the tk2 DNA with restriction enzymes at appropriate sites relative to the recombining sequences. Based on the substrate requirements for these recombination events, we propose a model to explain how recombination might occur in mammalian cells. The essential features of the model are that the cut restriction site ends are substrates for cellular exonucleases that degrade DNA strands. This process exposes complementary strands of the two defective tk genes, which then pair. Removal of unpaired DNA at the junction between the paired and unpaired regions permits a gap repair process to reconstruct an intact gene.  相似文献   

18.
The natural role of the conserved bacterial anticodon nuclease (ACNase) RloC is not known, but traits that set it apart from the homologous phage T4‐excluding ACNase PrrC could provide relevant clues. PrrC is silenced by a genetically linked DNA restriction‐modification (RM) protein and turned on by a phage‐encoded DNA restriction inhibitor. In contrast, RloC is rarely linked to an RM protein, and its ACNase is regulated by an internal switch responsive to double‐stranded DNA breaks. Moreover, PrrC nicks the tRNA substrate, whereas RloC excises the wobble nucleotide. These distinctions suggested that (i) T4 and related phage that degrade their host DNA will activate RloC and (ii) the tRNA species consequently disrupted will not be restored by phage tRNA repair enzymes that counteract PrrC. Consistent with these predictions we show that Acinetobacter baylyi RloC expressed in Escherichia coli is activated by wild‐type phage T4 but not by a mutant impaired in host DNA degradation. Moreover, host and T4 tRNA species disrupted by the activated ACNase were not restored by T4's tRNA repair system. Nonetheless, T4's plating efficiency was inefficiently impaired by AbaRloC, presumably due to a decoy function of the phage encoded tRNA target, the absence of which exacerbated the restriction.  相似文献   

19.
The host-controlled K-restriction of unmodified phage lambda is ten to hundred-fold alleviated in the E. coli K12 strain, carring plasmid pKM101 of N-incompatibility group. By restriction mapping Tn5 insertion in pKM101, which reduced pKM101-mediated alleviation of K-restriction, was shown to by located within BglII-B-fragment approximately 9 kb anticlockwise from the EcoRI-site of pKM101. We have termed the gene(s) promoting the alleviation of K-restriction ARD (Alleviation of Restriction of DNA). It was shown that (i) plasmid pKM101-mediated alleviation of K-restriction did not depend on bacterial genes LexA, RecBC, umuC and plasmid gene muc; (ii) ard gene did not mediate EcoK type modification of DNA and did not enhance the modification activity of EcoK system in a way similar to that observed with RAL gene of phage lambda. Action of Ard gene of plasmid pKM101 is highly specific: alleviation of restriction of DNA lambda takes place only in K-strains of E. coli and is practically absent in B-strains and also in E. coli strains which have restricting enzymes of 11 type, EcoRI and EcoRIII.  相似文献   

20.
DNA cleavage by Type III restriction enzymes is governed strictly by the relative arrangement of recognition sites on a DNA substrate—endonuclease activity is usually only triggered by sequences in head-to-head orientation. Tens to thousands of base pairs can separate these sites. Long distance communication over such distances could occur by either one-dimensional (1D) DNA translocation or 3D DNA looping. To distinguish between these alternatives, we analysed the activity of EcoPI and EcoP15I on DNA catenanes in which the recognition sites were either on the same or separate rings. While substrates with a pair of sites located on the same ring were cleaved efficiently, catenanes with sites on separate rings were not cleaved. These results exclude a simple 3D DNA-looping activity. To characterize the interactions further, EcoPI was incubated with plasmids carrying two recognition sites interspersed with two 21res sites for site-specific recombination by Tn21 resolvase; inhibition of recombination would indicate the formation of stable DNA loops. No inhibition was observed, even under conditions where EcoPI translocation could also occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号