首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aerobic biotransformation of the diaryl ethers 2,7-dichlorodibenzo-p-dioxin and 1,2,3,4-tetrachlorodibenzo-p-dioxin by the dibenzo-p-dioxin-utilizing strain Sphingomonas wittichii RW1, producing corresponding metabolites, was demonstrated for the first time. Our strain transformed 2,7-dichlorodibenzo-p-dioxin, yielding 4-chlorocatechol, and 1,2,3,4-tetrachlorodibenzo-p-dioxin, producing 3,4,5,6-tetrachlorocatechol and 2-methoxy-3,4,5,6-tetrachlorophenol; all of these compounds were unequivocally identified by mass spectrometry both before and after N,O-bis(trimethylsilyl)-trifluoroacetamide derivatization by comparison with authentic standards. Additional experiments showed that strain RW1 formed a second metabolite, 2-methoxy-3,4,5,6-tetrachlorophenol, from the original degradation product, 3,4,5,6-tetrachlorocatechol, by methylation of one of the two hydroxy substituents.  相似文献   

2.
Microalgae in genus Chlorella and Scenedesmus are common in aquatic ecosystems and are widely used for various studies on algal growth and applications. Macroalgae may play an important role for control of microalgal growth, attributable to their rich content of bioactive compounds. In this study, the brown seaweed Ascophyllum nodosum was extracted with 70% acetone and the extract was used to treat the green microalgae, Chlorella vulgaris and Scenedesmus sp. Cell density and chlorophyll a concentration were used as growth indexes to evaluate the effects of A. nodosum extract (ANE) on the microalgae. The ANE with concentrations > 1% exhibited significant capability of inhibition of the growth of microalgae by over 80%. On the contrary, 1% ANE caused varying degrees of acceleration of cell proliferation and chlorophyll a synthesis in C. vulgaris and Scenedesmus sp., respectively. Analysis of antioxidant activities of the enzymes superoxide dismutase (SOD) and catalase (CAT) revealed the impact of ANE on the antioxidant defense system of the microalgae. The SOD and CAT activities were significantly depressed by high concentrations (> 2%) ANE, while a slight increase of the enzyme activities was observed with 1% ANE at the early period, which could be correlated to the growth response. Therefore, the mechanism of microalgae control could be related to the interaction between the ANE and the antioxidant defense systems. Phlorotannins are proposed as the principal algistatic components in the ANE which could be utilized in controlling microalgae growth.  相似文献   

3.
A study was made on the use of a mixed microalgal consortium to degrade p-nitrophenol. The consortium was obtained from a microbial community in a waste container fed with the remains and by-products of medium culture containing substituted aromatic pollutants (nitrophenols, chlorophenols, fluorobenzene). After selective enrichment with p-nitrophenol (p-NP), followed by an antibiotic treatment, an axenic microalgal consortium was recovered, which was able to degrade p-nitrophenol. At a concentration of 50 mg L–1, total degradation occurred within 5 days. Two species, Chlorella vulgaris var. vulgaris f. minuscula and Coenochloris pyrenoidosa, were isolated from the microalgal consortium. The species were able to accomplish p-NP biodegradation when cultured separately, although Coenochloris pyrenoidosa was more efficient, achieving the same degradation rate as the original axenic microalgal consortium. When Coenochloris pyrenoidosa was associated with Chlorella vulgaris in a 3:1 ratio, complete removal of the nitro-aromatic compound occurred within three days. This is apparently the first report on the degradation of a nitro-aromatic compound by microalgae.  相似文献   

4.
Removal of nitrogen and phosphorus from wastewater by two green microalgae (Chlorella vulgaris and Scenedesmus rubescens) was investigated using a novel method of algal cell immobilization, the twin-layer system. In the twin-layer system, microalgae are immobilized by self-adhesion on a wet, microporous, ultrathin substrate (the substrate layer). Subtending the substrate layer, a second layer, consisting of a macroporous fibrous tissue (the source layer), provides the growth medium. Twin-layers effectively separate microalgae from the bulk of their growth medium, yet allow diffusion of nutrients. In the twin-layer system, algae remain 100% immobilized, which compares favourably with gel entrapment methods for cell immobilization. Both microalgae removed nitrate efficiently from municipal wastewater. Using secondary, synthetic wastewater, the two algae also removed phosphate, ammonium and nitrate to less than 10% of their initial concentration within 9 days. It is concluded that immobilization of C. vulgaris and S. rubescens on twin-layers is an effective means to reduce nitrogen and phosphorus levels in wastewater.  相似文献   

5.
Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 1) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical.  相似文献   

6.
Bio-fertilization is a sustainable agricultural practice that includes using bio-fertilizers to increase soil nutrient content resulting in higher productivity. Soil micro-flora has been exposed to improve soil fertility and increase biomass productivity and identified as a correct environmentally friendly bio-based fertilizer for pollution-free agricultural applies. The majority of cyanobacteria can fix nitrogen from the atmosphere and several species including Anabaena sp., Nostoc sp., and Oscillatoria angustissima is known to be effective cyanobacterial based bio fertilizers. Acutodesmus dimorphus, Spirulina platensis Chlorella vulgaris, Scenedesmus dimorphus, Anabaena azolla, and Nostoc sp. are some of the green microalgae and cyanobacteria species that have been successfully used as bio fertilizers to boost crop growth. Also, Chlorella vulgaris is one of the most commonly used microalgae in bio fertilizer studies. The addition of seaweed species that are Sargassum sp. and Gracilaria verrucosa leads to chemical changes as a soil fertility indicator on clay and sandy soils, and the addition of seaweed conditioner to soil can improve its organic content, return pH to normal, and reduce C/N ratio in both sandy and clay soil. This review provides an effective approach to increase soil fertility via environmentally friendly bio-based fertilizer using micro and macro algae. Instead of the usage of inorganic and organic fertilizers that have polluted impacts to soil as aggregation of heavy metals, in addition to there their human carcinogenic effects.  相似文献   

7.
The mechanism of hydrogen photoproduction by several algae   总被引:1,自引:1,他引:0  
Tim S. Stuart  Hans Gaffron 《Planta》1972,106(2):101-112
Summary The contribution of PS II to H2 photoproduction by several unicellular green algae was measured both when O2 evolution and photophosphorylation were unimpaired and also when these processes had been eliminated by Cl-CCP. As judged by the effects of DCMU, a PS II contribution was found under both sets of experimental conditions for several strains of Chlorella, Ankistrodesmus and Scenedesmus. However, H2 photoproduction by Chlamydomonas moewusii was insensitive to DCMU and thus was entirely due to PS I. With cells treated with Cl-CCP, the relative amount of PS II contribution varied from zero in autotrophically grown Chlamydomonas reinhardii, to 20% in photoheterotrophically grown and 50% in autotrophically grown cells of Ankistrodesmus braunii, Chlorella fusca, Chlorella vulgaris and Scenedesmus obliquus. The dehydrogenation of reduced H-donors by PS II of Scenedesmus treated with Cl-CCP showed the same biphasic kinetics previously described for H2 photoproduction by PS I of this alga.Abbreviations Cl-CCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ICC Indiana Culture Collection - PS photosystem - SAL salicylaldoxime - SIO Marine Botany Culture Collection, Scripps Institution of Oceanography These studies were supported by contract No. AT-(40-1)-2687 from the U.S. Atomic Energy Commission.  相似文献   

8.
Abstract

In this study, the decolorization efficiency of seven microalgae isolates; Nostoc muscorum, Nostoc humifusum, Spirulina platensis, Anabaena oryzae, Wollea saccata, Oscillatoria sp. and Chlorella vulgaris was investigated for dye decolorization. The highest decolorization percentages of Brazilwood, Orange G, and Naphthol Green B dyes (99.5%, 99.5%, and 98.5%, respectively) were achieved by Chlorella vulgaris. However, the maximum efficiency for dye decolorization percentages of CV and malachite green dyes were exhibited by A. oryzae (97.4%) and W. saccata (93.3%). Ligninolytic enzymes activity assay was carried out for laccase and lignin peroxidase enzymes, which revealed a high efficiency of the C. vulgaris, A. oryzae and W. saccata to lignin containing compound degradation. The highest laccase production recorded by C. vulgaris with Brazilwood, Orange G, and Naphthol Green B dyes (665.0, 678.6, and 659.5?U/ml, respectively). Similarly, C. vulgaris gave a high lignin peroxidase enzyme production with the above three dyes respectively (306.00, 298.34, and 311.45?U/ml). In addition, A. oryzae and W. saccata showed the highest production of the laccase enzyme (634.6 and 577.45?U/ml, respectively) with CV and malachite green dyes. The degradation products have been characterized after decolorization and verified using FTIR analysis. The high decolorization percentages achieved by C. vulgaris, A. oryzae and W. saccata make them potential candidates for bioremediation and pre-processing to remove dyes from textile effluents.  相似文献   

9.
Alcoholic extract of the marine algae Chlorella vulgaris was examined for its free radical scavenging effect with reference to naphthalene-induced lipid peroxidation in serum, liver, and kidney of rats. Initially, upon naphthalene intoxication (435 mg/kg body weight, intraperitoneally), the lipid peroxidation activity increased significantly (P < 0.001), and in contrast, the enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymic antioxidants (glutathione, ascorbic acid, and α-tocopherol) levels decreased remarkably. When the naphthalene stressed rats were treated with Chlorella vulgaris extract (70 mg/kg body weight, orally), the lipid peroxidation activity reduced significantly (P < 0.001) and the activities of both the enzymic and non-enzymic antioxidants increased reaching near control values. The minimum concentration (70 mg/l) of the extract that exhibited maximum (85%) free radical scavenging activity was chosen for the experimental study. The present results suggest that Chlorella vulgaris extract exerts its chemo-preventive effect by modulating the antioxidants status and lipid peroxidation during naphthalene intoxication.  相似文献   

10.
Chlorella vulgaris (C. vulgaris) microalga was investigated as a new potential feedstock for the production of biodegradable lubricant. In order to enhance microalgae lipid for biolubricant production, mixotrophic growth of C. vulgaris was optimized using statistical analysis of Plackett–Burman (P-B) and response surface methodology (RSM). A cheap substrate-based medium of molasses and corn steep liquor (CSL) was used instead of expensive mineral salts to reduce the total cost of microalgae production. The effects of molasses and CSL concentration (cheap substrates) and light intensity on the growth of microalgae and their lipid content were analyzed and modeled. Designed models by RSM showed good compatibility with a 95% confidence level when compared to the cultivation system. According to the models, optimal cultivation conditions were obtained with biomass productivity of 0.123 g L?1 day?1 and lipid dry weight of 0.64 g L?1 as 35% of dry weight of C. vulgaris. The extracted microalgae lipid presented useful fatty acid for biolubricant production with viscosities of 42.00 cSt at 40°C and 8.500 cSt at 100°C, viscosity index of 185, flash point of 185°C, and pour point of ?6°C. These properties showed that microalgae lipid could be used as potential feedstock for biolubricant production.  相似文献   

11.
Although microalgae are considered as a promising feedstock for biofuels, the energy efficiency of the production process needs to be significantly improved. Due to their small size and low concentration in the culture medium, cost‐efficient harvesting of microalgae is a major challenge. In this study, the use of electro‐coagulation–flocculation (ECF) as a method for harvesting a freshwater (Chlorella vulgaris) and a marine (Phaeodactylum tricornutum) microalgal species is evaluated. ECF was shown to be more efficient using an aluminum anode than using an iron anode. Furthermore, it could be concluded that the efficiency of the ECF process can be substantially improved by reducing the initial pH and by increasing the turbulence in the microalgal suspension. Although higher current densities resulted in a more rapid flocculation of the microalgal suspension, power consumption, expressed per kg of microalgae harvested, and release of aluminum were lower when a lower current density was used. The aluminum content of the harvested microalgal biomass was less than 1% while the aluminum concentration in the process water was below 2 mg L−1. Under optimal conditions, power consumption of the ECF process was around 2 kWh kg−1 of microalgal biomass harvested for Chlorella vulgaris and ca. 0.3 kWh kg−1 for Phaeodactylum tricornutum. Compared to centrifugation, ECF is thus more energy efficient. Because of the lower power consumption of ECF in seawater, ECF is a particularly attractive method for harvesting marine microalgae. Biotechnol. Bioeng. 2011;108: 2320–2329. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
The aim of this study was to assess the impact of the microalgae Chlorella vulgaris on the rice seedlings at physiological conditions and under cadmium (Cd) stress. We examined the effects of C. vulgaris in the nutrient solution on rice seedlings grown hydroponically in the presence and the absence of 150 μM CdCl2, using the low (77 K) temperature and pulse amplitude modulated (PAM) chlorophyll fluorescence, P700 photooxidation measurements, photochemical activities of both photosystems, kinetic parameters of oxygen evolution, oxidative stress markers (MDA, H2O2 and proline), pigment content, growth parameters and Cd accumulation. Data revealed that the application C. vulgaris not only stimulates growth and improves the functions of photosynthetic apparatus under physiological conditions, but also reduces the toxic effect of Cd on rice seedlings. Furthermore, the presence of the green microalgae in the nutrient solution of the rice seedlings during Cd exposure, significantly improved the growth, photochemical activities of both photosystems, the kinetic parameters of the oxygen-evolving reactions, pigment content and decreased lipid peroxidation, H2O2 and proline content. Data showed that the alleviation of Cd-induced effects in rice seedlings is a result of the Cd sorption by microalgae, as well as the reduced Cd accumulation in the roots and its translocation from the roots to the shoots.  相似文献   

13.
Strain YA was newly isolated from an enrichment culture of river sediment and was identified as Janibacter sp. It was able to utilize dibenzofuran as the sole source of carbon and energy. Strain YA degraded > 90% of 1-chloro-dibenzo-p-dioxin (1-CDD) and > 80% of 2-chloro-dibenzo-p-dioxin in 18 hours with each initial concentration at 40 mg/L. A novel metabolite, 2-chloro-2′,6-dihydroxydiphenylether, was observed in 1-CDD degradation. From the metabolites detected by gas chromatography–mass spectrometry, strain YA was supposed to have at least two types of oxidation pathways in 1-CDD degradation.  相似文献   

14.
In order to develop an effective CO2 mitigation process using microalgae for potential industrial application, the growth and physiological activity of Chlorella vulgaris in photobioreactor cultures were studied. C. vulgaris was grown at two CO2 concentrations (2 and 13% of CO2 v/v) and at three incident light intensities (50, 120 and 180 μmol m?2 s?1) for 9 days. The measured specific growth rate was similar under all conditions tested but an increase in light intensity and CO2 concentration affected the biomass and cell concentrations. Although carbon limitation was observed at 2% CO2, similar cellular composition was measured in both conditions. Light limitation induced a net change in the growth behavior of C. vulgaris. Nitrogen limitation seemed to decrease the nitrogen quota of the cells and rise the intracellular carbon:nitrogen ratio. Exopolysaccharide production per cell appeared to be affected by light intensity. In order to avoid underestimation of the CO2 biofixation rate of the microalgae, exopolysaccharide production was taken into account. The maximum CO2 removal rate (0.98 g CO2 L?1 d?1) and the highest biomass concentration (4.14 g DW L?1) were determined at 13% (v/v) CO2 and 180 μmol m?2 s?1. Our results show that C. vulgaris has a real potential for industrial CO2 remediation.  相似文献   

15.
Starch granules from Chlorella, Chlamydomonas and Scenedesmus, grown heterotro-phically in a medium containing organic carbon sources, were isolated by means of the toluol treatment of the sonicate of alga. The toluol treatment separated the starch granules in the water layer from the cells and cell debris coagulated in the upper toluol layer.

The starch granules of Chlorella vulgaris and Chlamydomonas sp. were composed of amylose (12 to 3%) and amylopectin. The amylose content of the starch granules of Scenedesmus basilensis was 22 %. All the X-ray diffraction patterns of algal starch obtained in this investigation were of the A-type, identical to that of corn starch.  相似文献   

16.
Summary Complete small-subunit rRNA (16S-like rRNA) coding region sequences were determined for eight species of the Chlorococcales (Chlorophyceae). The genera investigated includePrototheca, Ankistrodesmus, Scenedesmus, and fiveChlorella species. Distance matrix methods were used to infer a phylogenetic tree that describes evolutionary relationships between several plant and green algal groups. The tree exhibits a bifurcation within the Chlorococcales consistent with the division into Oocystaceae and Scenedesmaceae, but three of the fiveChlorella species are more similar to other algae than toChlorella vulgaris. All of the sequences contain primary and secondary structural features that are characteristic of 16S-like rRNAs of chlorophytes and higher plants.Anikstrodesmus stipitatus, however, contains a 394-bp group I intervening sequence in its 16S-like rRNA coding region.  相似文献   

17.
Sphingomonas wittichii RW1 is able to catabolize 1,2,3,4-tetrachlorodibenzo-p-dioxin (H. B. Hong, Y. S. Chang, I. H. Nam, P. Fortnagel, and S. Schmidt, Appl. Environ. Microbiol. 68:2584-2588, 2002). Here we demonstrate the aerobic bacterial catabolism of the ubiquitous toxic diaryl ether pollutant 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by this strain. The products of this biotransformation were identified as tetrachlorocatechol and 2-methoxy-3,4,5,6-tetrachlorophenol by comparing mass spectra recorded before and after n-butylboronate and N,O-bis(trimethylsilyl)-trifluoroacetamide derivatization with those of authentic compounds. Additional experiments showed that the less-chlorinated 1,2,3,7,8-pentachlorodibenzo-p-dioxin was not transformed by the strain RW1. The importance of substitution patterns for the degradability of individual congeners was illustrated by the fact that the 1,2,3-trichlorodibenzo-p-dioxin was catabolized to yield 3,4,5-trichlorocatechol, whereas the 2,3,7-trichlorodibenzo-p-dioxin was not attacked.  相似文献   

18.
A bacterium, which was observed in all cultivations of Microcystis sp., was isolated and designated as Rhodococcus sp. KWR2. The growth of bloom-forming cyanobacteria, including four strains of Microcystis aeruginosa and Anabaena variabilis, was suppressed by up to 75–88% by 2% (v/v) culture broth of KWR2 after 5 days. But KWR2 did not inhibit eukaryotic algae, Chlorella vulgaris and Scenedesmus sp. An extracellular algicidal substance produced by KWR2 showed a cyanobactericidal activity of 94% and was water-soluble with a molecular weight of lower than 8 kDa.  相似文献   

19.
Promising microbial consortia for producing biofertilizers for rice fields   总被引:1,自引:0,他引:1  
Two cyanobacterial cultures from rice paddies of Kyzylorda Provence, Kazakhstan were isolated and characterized: Anabaena variabilis and Nostoc calsicola. Based on these cultures, new consortia of cyanobacteria, microalgae and Azotobacter were developed: ZOB-1 (Anabaena variabilis, Chlorella vulgaris, and Azotobacter sp.) and ZOB-2 (Nostoc calsicola, Chlorella vulgaris, and Azotobacter sp.). High growth rate and photosynthetic activity of microalgae were observed in these consortia. The active consortium ZOB-1 was selected, which improved germination and growth of rice plants. ZOB-1 was recommended as a biostimulator and biofertilizer for crops.  相似文献   

20.
We demonstrated a comprehensive approach for development of axenic cultures of microalgae from environmental samples. A combination of ultrasonication, fluorescence‐activated cell sorting (FACS), and micropicking was used to isolate axenic cultures of Chlorella vulgaris Beyerinck (Beijerinck) and Chlorella sorokiniana Shihira & R.W. Krauss from swine wastewater, and Scenedesmus sp. YC001 from an open pond. Ultrasonication dispersed microorganisms attached to microalgae and reduced the bacterial population by 70%, and when followed by cell sorting yielded 99.5% pure microalgal strains. The strains were rendered axenic by the novel method of micropicking and were tested for purity in both solid and liquid media under different trophic states. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene confirmed the absence of unculturable bacteria, whereas fluorescence microscopy and scanning electron microscopy (SEM) further confirmed the axenicity. This is the most comprehensive approach developed to date for obtaining axenic microalgal strains without the use of antibiotics and repetitive subculturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号