首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.  相似文献   

2.
3.
Nostoc   punctiforme strain Pasteur Culture Collection (PCC) 73102, a sequenced filamentous cyanobacterium capable of nitrogen fixation, is used as a model organism for characterization of bioenergetic processes during nitrogen fixation in Nostoc . A protocol for isolating thylakoid membranes was developed to examine the biochemical and biophysical aspects of photosynthetic electron transfer. Thylakoids were isolated from filaments of N.   punctiforme by pneumatic pressure-drop lysis. The activity of photosynthetic enzymes in the isolated thylakoids was analysed by measuring oxygen evolution activity, fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. Electron transfer was found functional in both PSII and PSI. Electron transfer measurements in PSII, using diphenylcarbazide as electron donor and 2,6-dichlorophenolindophenol as electron acceptor, showed that 80% of the PSII centres were active in water oxidation in the final membrane preparation. Analysis of the membrane protein complexes was made by 2D gel electrophoresis, and identification of representative proteins was made by mass spectrometry. The ATP synthase, several oligomers of PSI, PSII and the NAD(P)H dehydrogenase (NDH)-1L and NDH-1M complexes, were all found in the gels. Some differences were noted compared with previous results from Synechocystis sp. PCC 6803. Two oligomers of PSII were found, monomeric and dimeric forms, but no CP43-less complexes. Both dimeric and monomeric forms of Cyt b 6/ f could be observed. In all, 28 different proteins were identified, of which 25 are transmembrane proteins or membrane associated ones.  相似文献   

4.
5.
The D1 protein, a key protein subunit of Photosystem II complex (PSII), is synthesised as a precursor (pD1) with a carboxyl-terminal extension. In the cyanobacterium Synechocystis sp. PCC 6803, this extension consists of 16 amino acid residues and it is cleaved by a specific protease in two putative steps with the final cleavage after the residue Ala344. In order to define the importance of the extension for the functioning of PSII, we constructed and characterized several site-directed mutants of Synechocystis that differ in the length and amino acid sequence of this extension. The mutant lacking the entire C-terminal extension exhibited slightly increased sensitivity to photoinhibition. Analysis of the PSII assembly in the mutant by the blue-native electrophoresis in combination with radioactive labelling revealed an increased level of the unassembled D1 protein in this strain. Replacement of the amino acid residue Asn359 by His or Asp also led to the higher vulnerability to photoinhibition of both mutants. In the Asn359His mutant, this vulnerability was accompanied by an increased level of the PSII core lacking CP43 indicating limitation of the repair cycle in the CP43 reassembly step.  相似文献   

6.
Photosystem II (PSII) is a large membrane protein complex that catalyzes oxidation of water to molecular oxygen. During its normal function, PSII is damaged and frequently turned over. The maturation of the D1 protein, a key component in PSII, is a critical step in PSII biogenesis. The precursor form of D1 (pD1) contains a C-terminal extension, which is removed by the protease CtpA to yield PSII complexes with oxygen evolution activity. To determine the temporal position of D1 processing in the PSII assembly pathway, PSII complexes containing only pD1 were isolated from a CtpA-deficient strain of the cyanobacterium Synechocystis 6803. Although membranes from the mutant cell had nearly 50% manganese, no manganese was detected in isolated DeltactpAHT3 PSII, indicating a severely decreased manganese affinity. However, chlorophyll fluorescence decay kinetics after a single saturating flash suggested that the donor Y(Z) was accessible to exogenous Mn(2+) ions. Furthermore, the extrinsic proteins PsbO, PsbU, and PsbV were not present in PSII isolated from this mutant. However, PsbO and PsbV were present in mutant membranes, but the amount of PsbV protein was consistently less in the mutant membranes compared with the control membranes. We conclude that D1 processing precedes manganese binding and assembly of the extrinsic proteins into PSII. Interestingly, the Psb27 protein was found to be more abundant in DeltactpAHT3 PSII than in HT3 PSII, suggesting a possible role of Psb27 as an assembly factor during PSII biogenesis.  相似文献   

7.
The protein matrix of an electron transfer protein creates an electrostatic environment for its redox site, which influences its electron transfer properties. Our studies of Fe-S proteins indicate that the protein is highly polarized around the redox site. Here, measures of deviations of the environmental electrostatic potential from a simple linear dielectric polarization response to the magnitude of the charge are proposed. In addition, a decomposition of the potential is proposed here to describe the apparent deviations from linearity, in which it is divided into a "permanent" component that is independent of the redox site charge and a dielectric component that linearly responds or polarizes to the charge. The nonlinearity measures and the decomposition were calculated for Clostridium pasteurianum rubredoxin from molecular dynamics simulations. The potential in rubredoxin is greater than expected from linear response theory, which implies it is a better electron acceptor than a redox site analog in a solvent with a dielectric constant equivalent to that of the protein. In addition, the potential in rubredoxin is described well by a permanent potential plus a linear response component. This permanent potential allows the protein matrix to create a favorable driving force with a low activation barrier for accepting electrons. The results here also suggest that the reduction potential of rubredoxin is determined mainly by the backbone and not the side chains, and that the redox site charge of rubredoxin may help to direct its folding.  相似文献   

8.
Desulfovibrio vulgaris rubredoxin, which contains a single [Fe(SCys)4] site, is shown to be a catalytically competent electron donor to two enzymes from the same organism, namely, rubrerythrin and two-iron superoxide reductase (a.k.a. rubredoxin oxidoreductase or desulfoferrodoxin). These two enzymes have been implicated in catalytic reduction of hydrogen peroxide and superoxide, respectively, during periods of oxidative stress in D. vulgaris, but their proximal electron donors had not been characterized. We further demonstrate the incorrectness of a previous report that rubredoxin is not an electron donor to the superoxide reductase and describe convenient assays for demonstrating the catalytic competence of all three proteins in their respective functions. Rubrerythrin is shown to be an efficient rubredoxin peroxidase in which the rubedoxin:hydrogen peroxide redox stoichiometry is 2:1 mol:mol. Using spinach ferredoxin-NADP+ oxidoreductase (FNR) as an artificial, but proficient, NADPH:rubredoxin reductase, rubredoxin was further found to catalyze rapid and complete reduction of all Fe3+ to Fe2+ in rubrerythrin by NADPH under anaerobic conditions. The combined system, FNR/rubredoxin/rubrerythrin, was shown to function as a catalytically competent NADPH peroxidase. Another small rubredoxin-like D. vulgaris protein, Rdl, could not substitute for rubredoxin as a peroxidase substrate of rubrerythrin. Similarly, D. vulgaris rubredoxin was demonstrated to efficiently catalyze reduction of D. vulgaris two-iron superoxide reductase and, when combined with FNR, to function as an NADPH:superoxide oxidoreductase. We suggest that, during periods of oxidative stress, rubredoxin could divert electron flow from the electron transport chain of D. vulgaris to rubrerythrin and superoxide reductase, thereby simultaneously protecting autoxidizable redox enzymes and lowering intracellular hydrogen peroxide and superoxide levels.  相似文献   

9.
Superoxide reductases are a class of non-haem iron enzymes which catalyse the monovalent reduction of the superoxide anion O2- into hydrogen peroxide and water. Treponema pallidum (Tp), the syphilis spirochete, expresses the gene for a superoxide reductase called neelaredoxin, having the iron protein rubredoxin as the putative electron donor necessary to complete the catalytic cycle. In this work, we present the first cloning, overexpression in Escherichia coli and purification of the Tp rubredoxin. Spectroscopic characterization of this 6 kDa protein allowed us to calculate the molar absorption coefficient of the 490 nm feature of ferric iron, epsilon=6.9+/-0.4 mM(-1) cm(-1). Moreover, the midpoint potential of Tp rubredoxin, determined using a glassy carbon electrode, was -76+/-5 mV. Reduced rubredoxin can be efficiently reoxidized upon addition of Na(2)IrCl(6)-oxidized neelaredoxin, in agreement with a direct electron transfer between the two proteins, with a stoichiometry of the electron transfer reaction of one molecule of oxidized rubredoxin per one molecule of neelaredoxin. In addition, in presence of a steady-state concentration of superoxide anion, the physiological substrate of neelaredoxin, reoxidation of rubredoxin was also observed in presence of catalytic amounts of superoxide reductase, and the rate of rubredoxin reoxidation was shown to be proportional to the concentration of neelaredoxin, in agreement with a bimolecular reaction, with a calculated k(app)=180 min(-1). Interestingly, similar experiments performed with a rubredoxin from the sulfate-reducing bacteria Desulfovibrio vulgaris resulted in a much lower value of k(app)=4.5 min(-1). Altogether, these results demonstrated the existence for a superoxide-mediated electron transfer between rubredoxin and neelaredoxin and confirmed the physiological character of this electron transfer reaction.  相似文献   

10.
Pure plasma membrane and thylakoid membrane fractions from Synechocystis 6803 were isolated to study the localisation and processing of the precursor form of the D1 protein (pD1) of photosystem II (PSII). PSII core proteins (D1, D2 and cytb559) were localised both to plasma and thylakoid membrane fractions, the majority in thylakoids. pD1 was found only in the thylakoid membrane where active PSII is known to function. Membrane fatty acid unsaturation was shown to be critical in processing of pD1 into mature D1 protein. This was concluded from pulse-labelling experiments at low temperature using wild type and a mutant Synechocystis 6803 with a low level of membrane fatty acid unsaturation. Further, pD1 was identified as two distinct bands, an indication of two cleavage sites in the precursor peptide or, alternatively, two different conformations of pD1. Our results provide evidence for thylakoid membranes being a primary synthesis site for D1 protein during its light-activated turnover. The existence of the PSII core proteins in the plasma membrane, on the other hand, may be related to the biosynthesis of new PSII complexes in these membranes.  相似文献   

11.
12.
The response of Spirulina (Arthrospira) platensis to high salt stress was investigated by incubating the cells in light of moderate intensity in the presence of 0.8 M NaCl. NaCl caused a decrease in photosystem II (PSII) mediated oxygen evolution activity and increase in photosystem I (PSI) activity and the amount of P700. Similarly maximal efficiency of PSII (Fv/Fm) and variable fluorescence (Fv/Fo) were also declined in salt-stressed cells. Western blot analysis reveal that the inhibition in PSII activity is due to a 40 % loss of a thylakoid membrane protein, known as D1, which is located in PSII reaction center. NaCl treatment of cells also resulted in the alterations of other thylakoid membrane proteins: most prominently, a dramatic diminishment of the 47-kDa chlorophyll protein (CP) and 94-kDa protein, and accumulation of a 17-kDa protein band were observed in SDS-PAGE. The changes in 47-kDa and 94-kDa proteins lead to the decreased energy transfer from light harvesting antenna to PSII, which was accompanied by alterations in the chlorophyll fluorescence emission spectra of whole cells and isolated thylakoids. Therefore we conclude that salt stress has various effects on photosynthetic electron transport activities due to the marked alterations in the composition of thylakoid membrane proteins.  相似文献   

13.
The structure, function and dynamics of photosystem two   总被引:6,自引:0,他引:6  
One of the greatest challenges in modern photosynthesis research is to elucidate fully the structural and functional properties of photosystem two (PSII). This water-plasto-quinone oxidoreductase is located in a membrane complex composed of more than 25 subunits. The primary and secondary structures of all known subunits which constitute the central core of PSII are reviewed. How these subunits interact with each other to produce the tertiary and quaternary structure of PSII in vivo is not fully understood. However, electron microscopy is helping to fill this gap in our knowledge both by single particle analysis and electron crystallography. These studies suggest that active PSII is dimeric, although the functional significance of this oligomeric state is not yet understood. Moreover, the elucidation of the structure of photosystem one (PSI) by X-ray crystallography has revealed features which are likely to be relevant to PSII structure. It seems highly likely that the D1 protein with CP43 and D2 protein with CP47 (summing 11 transmembrane helices in each case) will have structural similarities to the organisation of PsaA and PsaB. It is likely that the turnover of the D1 protein is aided by the relatively easy removal of CP43 from this arrangement of the PSII core.  相似文献   

14.
Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein.  相似文献   

15.
Regulation of translation elongation, membrane insertion, and assembly of the chloroplast-encoded D1 protein of photosystem II (PSII) was studied using a chloroplast translation system in organello. Translation elongation of D1 protein was found to be regulated by (1) a redox component that can be activated not only by photosynthetic electron transfer but also by reduction with DTT; (2) the trans-thylakoid proton gradient, which is absolutely required for elongation of D1 nascent chains on the thylakoid membrane; and (3) the thiol reactants N-ethylmaleimide (NEM) and iodosobenzoic acid (IBZ), which inhibit translation elongation with concomitant accumulation of distinct D1 pausing intermediates. These results demonstrate that D1 translation elongation and membrane insertion are tightly coupled and highly regulated processes in that proper insertion is a prerequisite for translation elongation of D1. Cotranslational and post-translational assembly steps of D1 into PSII reaction center and core complexes occurred independently of photosynthetic electron transfer or trans-thylakoid proton gradient but were strongly affected by the thiol reactants DTT, NEM, and IBZ. These compounds reduced the stability of the early PSII assembly intermediates, hampered the C-terminal processing of the precursor of D1, and prevented the post-translational reassociation of CP43, indicating a strong dependence of the D1 assembly steps on proper redox conditions and the formation of disulfide bonds.  相似文献   

16.
The complete polypeptide chain of rubrerythrin from the sulfate reducing bacterium Desulfovibrio vulgaris, strain Hildenborough NCIB 8303, was found by protein chemical techniques to consist of 191 residues and to have the amino acid sequence [sequence: see text] The C-terminal part of the protein (position 153----191) shows the typical sequence features of rubredoxin, a protein with a nonheme iron center also present in the same and other Desulfovibrio species. Based on the known three-dimensional structure of D. desulfuricans rubredoxin, we propose that the C-terminal part of rubrerythrin is folded in a similar way and suggest that the deletion of the extra 10 residues is compatible with the same basic rubredoxin-fold. After characterization of the C-terminal region, and in contrast to what could be expected from previously published spectroscopic analyses, the N-terminal region 1-152 of rubrerythrin appears to have no sequence similarity with the eukaryotic protein hemerythrin which is known to contain a binuclear iron center bound by 5 histidine ligands. However, the N-terminal region of rubrerythrin does contain 5 histidine residues but they are differently spaced along the peptide chain. We suggest that at least one of the 3 histidine residues located in the rubredoxin-like center of rubrerythrin may be liganded to one iron atom of the hemerythrin-like center. This paper is the first sequence report of a protein with pyrophosphatase activity although the physiological substrate for the rubrerythrin may be not inorganic pyrophosphate.  相似文献   

17.
Cyanobacterial cells have two autonomous internal membrane systems, plasma membrane and thylakoid membrane. In these oxygenic photosynthetic organisms the assembly of the large membrane protein complex photosystem II (PSII) is an intricate process that requires the recruitment of numerous protein subunits and cofactors involved in excitation and electron transfer processes. Precise control of this assembly process is necessary because electron transfer reactions in partially assembled PSII can lead to oxidative damage and degradation of the protein complex. In this communication we demonstrate that the activation of PSII electron transfer reactions in the cyanobacterium Synechocystis sp. PCC 6803 takes place sequentially. In this organism partially assembled PSII complexes can be detected in the plasma membrane. We have determined that such PSII complexes can undergo light-induced charge separation and contain a functional electron acceptor side but not an assembled donor side. In contrast, PSII complexes in thylakoid membrane are fully assembled and capable of multiple turnovers. We conclude that PSII reaction center cores assembled in the plasma membrane are photochemically competent and can catalyze single turnovers. We propose that upon transfer of such PSII core complexes to the thylakoid membrane, additional proteins are incorporated followed by binding and activation of various donor side cofactors. Such a stepwise process protects cyanobacterial cells from potentially harmful consequences of performing water oxidation in a partially assembled PSII complex before it reaches its final destination in the thylakoid membrane.  相似文献   

18.
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.  相似文献   

19.
The membrane protein components of photosystem I (PSI) and II (PSII) from different species were prefractionated by liquid extraction and sucrose gradient ultracentrifugation and subsequently analyzed by reversed-phase high-performance liquid chromatography-electrospray ionization-mass spectrometry (RP-HPLC-ESI-MS) using poly-(styrene-divinylbenzene)-based monolithic capillary columns. The analytical method was shown to be very flexible and enabled the identification of antenna proteins as well as most of the proteins of the reaction center from PSI and PSII in various plant species with few RP-HPLC-ESI-MS analyses necessitating only minor adaptations in the gradients of acetonitrile in 0.05% aqueous trifluoroacetic acid. The membrane proteins, ranging in molecular mass (Mr) from 4196 (I protein) to more than 80,000 (PSI A/B) as well as isoforms were identified on the basis of their intact Mr and comparison with Mr deduced from known DNA or protein sequences. High quality mass spectra enabled the identification and quantitation of the nonphosphorylated and phosphorylated reaction center subunits D1, D2, and CP43 of PSII, containing five to seven membrane-spanning alpha-helices. Because of its high flexibility and suitability for proteins having a very wide range of Mr and hydrophobicities, the method is generally applicable to the analysis of complex mixtures of membrane proteins.  相似文献   

20.
 The change in the equilibrium reduction potentials of the iron-sulfur proteins, Pyrococcus furiosus rubredoxin and P. furiosus ferredoxin, and heme protein, horse cytochrome c, has been calculated as a function of temperature using a numerical solution to the Poisson-Boltzman equation. Working curves for different internal dielectric constants were generated to best reproduce experimental observation. Based on a comparison of the experimental and simulated change in reduction potential with temperature, it is concluded that the dielectric constant of proteins is temperature-dependent and varies from protein to protein. For example, the temperature-dependent reduction potential of cytochrome c can only be simulated using a different temperature-dependent dielectric constant for each oxidation state, but this was not the case for rubredoxin or ferredoxin. The role of changes in ionization states of cytochrome c at alkaline pHs, where the reduction potential is known to be pH-dependent at room temperature, is also discussed in terms of electrostatic interaction energies as a function of temperature. It appears that temperature/reduction potential profiles may provide a direct method for measuring relative changes in internal protein dielectric constants. Received: 29 April 1996 / Accepted: 1 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号